如圖1,已知菱形ABCD的邊長(zhǎng)為2,點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在坐標(biāo)原點(diǎn).點(diǎn)D的坐標(biāo)為(,3),拋物線(xiàn)y=ax2+b(a≠0)經(jīng)過(guò)AB、CD兩邊的中點(diǎn).

(1)求這條拋物線(xiàn)的函數(shù)解析式;
(2)將菱形ABCD以每秒1個(gè)單位長(zhǎng)度的速度沿x軸正方向勻速平移(如圖2),過(guò)點(diǎn)B作BE⊥CD于點(diǎn)E,交拋物線(xiàn)于點(diǎn)F,連接DF、AF.設(shè)菱形ABCD平移的時(shí)間為t秒(0<t<
①當(dāng)t=1時(shí),△ADF與△DEF是否相似?請(qǐng)說(shuō)明理由;
②連接FC,以點(diǎn)F為旋轉(zhuǎn)中心,將△FEC按順時(shí)針?lè)较蛐D(zhuǎn)180°,得△FE′C′,當(dāng)△FE′C′落在x軸與拋物線(xiàn)在x軸上方的部分圍成的圖形中(包括邊界)時(shí),求t的取值范圍.(寫(xiě)出答案即可)
(1)y=﹣x2+3
(2)①由對(duì)應(yīng)邊成比例可證得
②畫(huà)出旋轉(zhuǎn)后的圖形,認(rèn)真分析滿(mǎn)足題意要求時(shí),需要具備什么樣的限制條件,然后根據(jù)限制條件列出不等式,求出t的取值范圍.確定限制條件是解題的關(guān)鍵

試題分析:解:(1)由題意得AB的中點(diǎn)坐標(biāo)為(﹣,0),
CD的中點(diǎn)坐標(biāo)為(0,3),           2分

分別代入y=ax2+b得
,解得,,
∴y=﹣x2+3.                3分
(2)①如圖2所示,在Rt△BCE中,∠BEC=90°,BE=3,BC=2

∴sinC===,∴∠C=60°,∠CBE=30°
∴EC=BC=,DE=           4分
又∵AD∥BC,∴∠ADC+∠C=180°
∴∠ADC=180°﹣60°=120°           5分
∵t=1,
∴B點(diǎn)為(1,0)
∴F(1,2) ,E(1,3)
∴EF=1                  6分
在Rt△DEF中
tan∠EDF=
∴∠EDF=300
∴∠ADF=∠ADC—∠EDF=1200—300=900
∴∠ADF=∠DEF
∴DF=2EF=2           7分
又∵,

∴△ADF∽△DEF           8分
②如圖3所示,依題意作出旋轉(zhuǎn)后的三角形△FE′C′,過(guò)C′作MN⊥x軸,分別交拋物線(xiàn)、x軸于點(diǎn)M、點(diǎn)N.

觀(guān)察圖形可知,欲使△FE′C′落在指定區(qū)域內(nèi),必須滿(mǎn)足:EE′≤BE且MN≥C′N(xiāo).
∵F(t,3﹣t2),∴EF=3﹣(3﹣t2)=t2,∴EE′=2EF=2t2
由EE′≤BE,得2t2≤3,解得t≤
∵C′E′=CE=,∴C′點(diǎn)的橫坐標(biāo)為t﹣
∴MN=3﹣(t﹣2,又C′N(xiāo)=BE′=BE﹣EE′=3﹣2t2
由MN≥C′N(xiāo),得3﹣(t﹣2≥3﹣2t2,解得t≥
∴t的取值范圍為:.           11分
點(diǎn)評(píng):本題是中考?jí)狠S題,綜合考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法、幾何變換(平移與旋轉(zhuǎn))、菱形的性質(zhì)、相似三角形的判定與性質(zhì)等重要知識(shí)點(diǎn),難度較大,對(duì)考生能力要求很高.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某同學(xué)利用描點(diǎn)法畫(huà)二次函數(shù)y=ax2+bx+c(a≠0)的圖象時(shí),列出的部分?jǐn)?shù)據(jù)如下表:
x
0
1
2
3
4
y
3
0
-2
0
3
經(jīng)檢查,發(fā)現(xiàn)表格中恰好有一組數(shù)據(jù)計(jì)算錯(cuò)誤,請(qǐng)你根據(jù)上述信息寫(xiě)出該二次函數(shù)的解析式(     )
A.y=      B. y=x2-4x+3    C.      D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線(xiàn)=-+5經(jīng)過(guò)點(diǎn)C(4,0),與軸交于另一點(diǎn)A,與軸交于點(diǎn)B.

(1)求點(diǎn)A、B的坐標(biāo);
(2)P是軸上一點(diǎn),△PAB是等腰三角形,試求P點(diǎn)坐標(biāo);
(3)若·Q的半徑為1,圓心Q在拋物線(xiàn)上運(yùn)動(dòng),當(dāng)·Q與軸相切時(shí),求·Q上的點(diǎn)到點(diǎn)B的最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線(xiàn)與y軸交于點(diǎn)C,與x軸交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)是(-1,0),O是坐標(biāo)原點(diǎn),且.點(diǎn)E為線(xiàn)段BC上的動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)B,C重合),以E為頂點(diǎn)作,射線(xiàn)ET交線(xiàn)段OB于點(diǎn)F.

(1) 求出此拋物線(xiàn)函數(shù)表達(dá)式,并直接寫(xiě)出直線(xiàn)BC的解析式;
(2)求證:;
(3)當(dāng)為等腰三角形時(shí),求此時(shí)點(diǎn)E的坐標(biāo);
(4)點(diǎn)P為拋物線(xiàn)的對(duì)稱(chēng)軸與直線(xiàn)BC的交點(diǎn),點(diǎn)M在x軸上,點(diǎn)N在拋物線(xiàn)上,是否存在以點(diǎn)A、M、N、P為頂點(diǎn)的平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線(xiàn)與拋物線(xiàn)交于A、B兩點(diǎn),點(diǎn)Ax軸上,點(diǎn)B的橫坐標(biāo)為-8.

(1)求該拋物線(xiàn)的解析式;
(2)點(diǎn)P是直線(xiàn)AB上方的拋物線(xiàn)上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過(guò)點(diǎn)Px軸的垂線(xiàn),垂足為C,交直線(xiàn)AB于點(diǎn)D,作PEAB于點(diǎn)E
①設(shè)△PDE的周長(zhǎng)為l,點(diǎn)P的橫坐標(biāo)為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;
②連接PA,以PA為邊作如圖所示一側(cè)的正方形APFG.隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)FG恰好落在y軸上時(shí),求出對(duì)應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,某隧道橫截面的上下輪廓線(xiàn)分別由拋物線(xiàn)對(duì)稱(chēng)的一部分和矩形的一部分構(gòu)成,最大高度為6米,底部寬度為12米. 現(xiàn)以O(shè)點(diǎn)為原點(diǎn),OM所在直線(xiàn)為x軸建立直角坐標(biāo)系.

(1) 直接寫(xiě)出點(diǎn)M及拋物線(xiàn)頂點(diǎn)P的坐標(biāo);
(2) 求出這條拋物線(xiàn)的函數(shù)解析式;
(3) 若要搭建一個(gè)矩形“支撐架”AD- DC- CB,使C、D點(diǎn)在拋物線(xiàn)上,A、B點(diǎn)在地面OM上,則這個(gè)“支撐架”總長(zhǎng)的最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線(xiàn)經(jīng)過(guò)A(4,0),B(1,0),C(0,-2)三點(diǎn).

(1)求出拋物線(xiàn)的解析式;
(2)P是拋物線(xiàn)上一動(dòng)點(diǎn),過(guò)PPMx軸,垂足為M,是否存在P點(diǎn),使得以A,P,M為頂點(diǎn)的三角形與△OAC相似?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在直線(xiàn)AC上方的拋物線(xiàn)上有一點(diǎn)D,使得△DCA的面積最大,求出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)A(x1,y1),B(x2,y2),在拋物線(xiàn)上,且x1<x2<-2,則y1    y2(填“>”或“=”或“<”)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

大潤(rùn)發(fā)超市進(jìn)了一批成本為8元/個(gè)的文具盒. 調(diào)查發(fā)現(xiàn):這種文具盒每個(gè)星期的銷(xiāo)售量y(個(gè))與它的定價(jià)x(元/個(gè))的關(guān)系如圖所示:

(1)求這種文具盒每個(gè)星期的銷(xiāo)售量y(個(gè))與它的定價(jià)x(元/個(gè))之間的函數(shù)關(guān)系式(不必寫(xiě)出自變量x的取值范圍);
(2)每個(gè)文具盒的定價(jià)是多少元時(shí),超市每星期銷(xiāo)售這種文具盒(不考慮其他因素)可獲得的利潤(rùn)為1200元?
(3)若該超市每星期銷(xiāo)售這種文具盒的銷(xiāo)售量不少于115個(gè),且單件利潤(rùn)不低于4元(x為整數(shù)),當(dāng)每個(gè)文具盒定價(jià)多少元時(shí),超市每星期利潤(rùn)最高?最高利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案