【題目】已知直線軸交于點A.

1A點的坐標(biāo)為 .

2)直線交于點B,若以O、AB、C為頂點的四邊形是平行四邊形,求點C的坐標(biāo) .

【答案】1)(02);(2)(3,2)或(3,6)或(-3,-2).

【解析】

1,令x=0,則y=2,即可求解;

2)分AO是平行四邊形的一條邊、AO是平行四邊形的對角線,兩種情況分別求解即可.

解:(1,令x=0,則y=2,

則點A02),

故答案為:(02);

2)聯(lián)立直線l1l2的表達(dá)式并解得:x=3,

故點B3,4),

①當(dāng)AO是平行四邊形的一條邊時,

則點C32)或(3,6);

②當(dāng)AO是平行四邊形的對角線時,

設(shè)點C的坐標(biāo)為(a,b),點B3,4),

BC的中點和AO的中點坐標(biāo),

由中點坐標(biāo)公式:a+3=0,b+4=2

解得:a=-3,b=-2

故點C-3,-2);

故點C坐標(biāo)為:(3,2)或(3,6)或(-3,-2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知甲乙兩人在一個200米的環(huán)形跑道上練習(xí)跑步,現(xiàn)在把跑道分成相等的4段,即兩條直道和兩條彎道的長度相同.甲平均每秒跑4米,乙平均每秒跑6米,若甲乙兩人分別從A、C兩處同時相向出發(fā)(如圖),試解答下列問題:

1)幾秒后兩人首次相遇?請說出此時他們在跑道上的具體位置;

2)首次相遇后,又經(jīng)過多少時間他們再次相遇?

3)他們第100次相遇時,在哪一段跑道上?(第(3)問直接寫出結(jié)論即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)的圖像與軸交于點,一次函數(shù)的圖像分別與軸、軸交于點,且與的圖像交于點.

(1)的值;

(2),則的取值范圍是 ;

(3)求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在平行四邊形ABCD中,EAD上一點,且AB=AE,連接BEAC于點H,過點AAFBCF,交BE于點G.

(1)若∠D=50°,求∠EBC的度數(shù);

(2)ACCD,過點GGMBCAC于點M,求證:AH=MC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C為⊙O上一點,CD平分∠ACB交⊙O于點D

1ADBD相等嗎?為什么?

2)若AB=10AC=6,求CD的長;

3)若P為⊙O上異于A、B、C、D的點,試探究PA、PD、PB之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只不透明的箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同.

(1)從箱子中隨機摸出一個球是白球的概率是

(2)從箱子中隨機摸出一個球,記錄下顏色后不將它放回箱子,攪勻后再摸出一個球,求兩次摸出的球都是白球的概率,并畫出樹狀圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,己知正方形ABCD的邊長為4, P是對角線BD上一點,PE⊥BC于點E, PF⊥CD于點F,連接AP, EF.給出下列結(jié)論:①PD=EC:②四邊形PECF的周長為8;③△APD一定是等腰三角形:④AP=EF⑤EF的最小值為;⑥AP⊥EF.其中正確結(jié)論的序號為(

A. ①②④⑤⑥B. ①②④⑤

C. ②④⑤D. ②④⑤⑥

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.請根據(jù)你對這句話的理解,解決下面問題:若m、nmn)是關(guān)于x的方程1﹣x﹣a)(x﹣b=0的兩根,且ab,則a、bm、n的大小關(guān)系是( ).

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市有著豐富的土地資源,適宜種植玉米,某企業(yè)已收購玉米525噸,根據(jù)市場信息,將玉米直接銷售,每噸可獲利100元;如果對玉米進(jìn)行粗加工,每天可加工8噸,每噸可獲利1000元;如果對玉米進(jìn)行精加工,每天可加工05噸,每噸可獲利5000元.由于受條件限制,在同一天中只能采取一種加工方式,并且必須在30天內(nèi)將這批玉米全部銷售,為此,研究了兩種方案.

1)方案一:將玉米全部粗加工后銷售,則可獲利 元;

2)方案二:30天時間都進(jìn)行精加工,未來得及加工的玉米,在市場上直接銷售,則可獲利 元;

3)問是否存在第三種方案,將部分玉米精加工,其余玉米粗加工,并恰好在30天內(nèi)完成?若存在,請求銷售后所獲利潤:若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案