【題目】一本小說共頁,一位同學第一天看了全書的6頁,第二天看了剩下的6頁,第三天把剩下的全部看完.

①該同學第一天看了多少頁?

②該同學第二天看了多少頁?

③若,則第三天看了多少頁?

【答案】①(m-6)頁;②(m+8)頁;③398頁.

【解析】

①根據(jù)看了全書的6列出含有m的代數(shù)式即可;

②先求出剩下多少頁,再用含有m的代數(shù)式表示出剩下的6頁即為第二天看的頁數(shù);

③第三天看的頁數(shù)=總頁數(shù)-第一天看的頁數(shù)-第二天看的頁數(shù),進而把m=900代入求值即可.

①∵一本小說共m頁,一位同學第一天看了全書的6頁,

∴第一天看了(m-6)頁,

②剩下的頁數(shù)為:m-m-6=m+6

∵第二天看了剩下的6頁,

∴第二天看了(m+6)×+6=(m+8)頁,

③還剩下:(m+6)( m+8)m+6m8(mm)+(68)m2,

m=900時,m2×9002398(頁),

答:第三天看了398頁.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,對角線AC、BD相交于點OADDB,點E、F、G分別是AO、BO、DC的中點,連接EFDE、EG、GF

1)求證:四邊形DEFG是平行四邊形;

2)求證:EGEF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點C在線段AB上,AC = 8 cm,CB = 6 cm,點M、N分別是AC、BC的中點.

(1)求線段MN的長.

(2)若C為線段AB上任意一點,滿足AC+CB=a(cm),其他條件不變,你能猜想出MN的長度嗎?并說明理由.

(3)若C在線段AB的延長線上,且滿足AC-CB=b(cm),M、N分別為AC、BC的中點,你能猜想出MN的長度嗎?請畫出圖形,寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】嘉琪同學要證明命題兩組對邊分別相等的四邊形是平行四邊形是正確的,她先用尺規(guī)作出了如圖所示的□ABCD,并寫出了如下尚不完整的已知和求證.

已知:如圖,在四邊形ABCD中,BC=AD,AB=  

求證:四邊形ABCD  四邊形.

1)補全已知和求證(在方框中填空);

2)嘉琪同學想利用三角形全等,依據(jù)兩組對邊分別平行的四邊形是平行四邊形來證明.請你按她的想法完成證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定:有一組鄰邊相等,且這組鄰邊的夾角為的凸四邊形叫做準箏形。如圖1,四邊形ABCD,AB=AD,A=,則四邊形ABCD準箏形

(1)如圖2,CHABC的高線,A=,ABC=,AB=2.CH;

(2) 如圖3,四邊形ABCD,BC=2,CD=4,AC=6,BCD=,且AD=BD,試判斷四邊形ABCD是不是準箏形,并說明理由。

小紅是這樣思考的:延長BC至點E,使CE=CD=4,連結(jié)DE,則DCE是等邊三角形,再說明ACDBED就可以了。請根據(jù)小紅的思考完成本小題。

(3) (1)條件下,設(shè)DABC所在平面內(nèi)一點,當四邊形ABCD準箏形時,請直接寫出四邊形ABCD的面積;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10分)在某市組織的大型商業(yè)演出活動中,對團體購買門票實行優(yōu)惠,決定在原定票價基礎(chǔ)上每張降價80元,這樣按原定票價需花費6000元購買的門票張數(shù),現(xiàn)在只花費了4800元.

1)求每張門票原定的票價;

2)根據(jù)實際情況,活動組織單位決定對于個人購票也采取優(yōu)惠措施,原定票價經(jīng)過連續(xù)二次降價后降為324元,求平均每次降價的百分率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,OE平分∠AOCOEOF,∠AOE=32°.

1)求∠DOB的度數(shù);

2OF是∠AOD的角平分線嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,點A,B分別在x軸,y軸上,點A的坐標為(﹣1,0),∠ABO=30°,線段PQ的端點P從點O出發(fā),沿△OBA的邊按O→B→A→O運動一周,同時另一端點Q隨之在x軸的非負半軸上運動,如果PQ=,那么當點P運動一周時,點Q運動的總路程為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面內(nèi)有一等腰RtABC,ACB=90°,點A在直線l上.過點CCE1于點E,過點BBFl于點F,測量得CE=3,BF=2,則AF的長為( 。

A. 5 B. 4 C. 8 D. 7

查看答案和解析>>

同步練習冊答案