如圖,在梯形ABCD中,AB∥DC,∠B=90°,且AB=10,BC=6,CD=2.點(diǎn)E從點(diǎn)B出發(fā)沿BC方向運(yùn)動(dòng),過點(diǎn)E作EF∥AD交邊AB于點(diǎn)F.將△BEF沿EF所在的直線折疊得到△GEF,直線FG、EG分別交AD于點(diǎn)M、N,當(dāng)EG過點(diǎn)D時(shí),點(diǎn)E即停止運(yùn)動(dòng).設(shè)BE=x,△GEF與梯形ABCD的重疊部分的面積為y.
(1)證明△AMF是等腰三角形;
(2)當(dāng)EG過點(diǎn)D時(shí)(如圖(3)),求x的值;
(3)將y表示成x的函數(shù),并求y的最大值.

【答案】分析:(1)由條件EF∥AD就可以得出∠A=∠EFB,∠GFE=∠AMF,由△GFE與△BFE關(guān)于EF對(duì)稱可以得出∠GFE=∠BFE,就可以得出∠A=∠AMF,從而得出結(jié)論;
(2)當(dāng)EG過點(diǎn)D時(shí)在Rt△EDC中由勾股定理建立方程求出其解即可;
(3)分情況討論當(dāng)點(diǎn)G不在梯形外時(shí)和點(diǎn)G在梯形之外兩種情況求出x的值就可以求出y與x之間的函數(shù)關(guān)系式,在自變量的取值范圍內(nèi)就可以求出相應(yīng)的最大值,從而求出結(jié)論;
解答:(1)證明:如圖1,∵EF∥AD,
∴∠A=∠EFB,∠GFE=∠AMF.
∵△GFE與△BFE關(guān)于EF對(duì)稱,
∴△GFE≌△BFE,
∴∠GFE=∠BFE,
∴∠A=∠AMF,
∴△AMF是等腰三角形;

(2)解:如圖1,作DQ⊥AB于點(diǎn)Q,
∴∠AQD=∠DQB=90°.
∴AB∥DC,
∴∠CDQ=90°.
∴∠B=90°,
∴四邊形CDQB是矩形,
∴CD=QB=2,QD=CB=6,
∴AQ=10-2=8.
在Rt△ADQ中,由勾股定理得
AD==10,
∴tan∠A=
∴tan∠EFB==
如圖3,∵EB=x,
∴FB=x,CE=6-x,
∴AF=MF=10-x,
∴GM=,
∴GD=2x-,
∴DE=-x,
在Rt△CED中,由勾股定理得
-x)2-(6-x)2=4,
解得:x=,
∴當(dāng)EG過點(diǎn)D時(shí)x=;


(3)解:當(dāng)點(diǎn)G在梯形ABCD內(nèi)部或邊AD上時(shí),
y=x•x=x2,
當(dāng)點(diǎn)G在邊AD上時(shí),易求得x=,
此時(shí)0<x≤
則當(dāng)x=時(shí),y最大值為
當(dāng)點(diǎn)G在梯形ABCD外時(shí),
∵△GMN∽△GFE,
,
,由(2)知,x≤
y═-2x2+20x-=-2(x-5)2+<x≤),
當(dāng)x=5時(shí),y最大值為,
由于,故當(dāng)x=5時(shí),y最大值為
點(diǎn)評(píng):本題考查了等腰三角形的判定及性質(zhì)的運(yùn)用,矩形的性質(zhì)的運(yùn)用,勾股定理的性質(zhì)的運(yùn)用,軸對(duì)稱的性質(zhì)的運(yùn)用,函數(shù)的解析式的性質(zhì)的運(yùn)用,分段函數(shù)的運(yùn)用,三角函數(shù)值的運(yùn)用,解答時(shí)求分段函數(shù)的解析式是難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對(duì)角線AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對(duì)角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個(gè)梯形的面積為21cm2,周長(zhǎng)為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊(cè)答案