【題目】探索代數(shù)式與代數(shù)式的關(guān)系.

1)當(dāng),時(shí),分別計(jì)算兩個(gè)代數(shù)式的值.

2)當(dāng)時(shí),分別計(jì)算兩個(gè)代數(shù)式的值.

3)你發(fā)現(xiàn)了什么規(guī)律?

4)利用你發(fā)現(xiàn)的規(guī)律計(jì)算:20182-2×2018×2019+20192.

【答案】14949;(249,49;(3;(41

【解析】

1)(2)把ab的值代入兩式計(jì)算即可得到結(jié)果;
3)歸納總結(jié)得出關(guān)系式即可;
4)原式變形后,利用完全平方公式計(jì)算即可得到結(jié)果.

解:(1a2-2ab+b2=25+20+4=49,(a-b2=5+22=49

2a2-2ab+b2=9+24+16=49,(a-b2=-3-42=49;

3a2-2ab+b2=a-b2;
420182-2×2018×2019+20192=2018-20192=1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將連續(xù)的偶數(shù)2,4,68,,如圖所示排列:

(1)求圖中十字框內(nèi)5個(gè)數(shù)的和與中間的數(shù)16的倍數(shù)關(guān)系.

(2)若將十字框上下左右移動(dòng),可框住另外的五個(gè)數(shù),請(qǐng)說(shuō)明這五個(gè)數(shù)的和與十字框最中間的數(shù)之間存在的關(guān)系.

(3)若將十字框上下左右移動(dòng),框住的五個(gè)數(shù)的和能等于2019嗎?若能,請(qǐng)寫出這五個(gè)數(shù);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列生活、生產(chǎn)現(xiàn)象中,可以用基本事實(shí)“兩點(diǎn)確定一條直線”來(lái)解釋的有( )

①用兩顆釘子就可以把木條固定在墻上

②把筆尖看成一個(gè)點(diǎn),當(dāng)這個(gè)點(diǎn)運(yùn)動(dòng)時(shí)便得到一條線;

③把彎曲的公路改直,就能縮短路程;

④植樹時(shí),只要栽下兩棵樹,就可以把同一行樹栽在同一條直線上。

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖:在△ABC中,AC=3,BC=6,C=60;

(1)將△ABC繞著點(diǎn)C旋轉(zhuǎn),使點(diǎn)A落在直線BC上的點(diǎn)A,點(diǎn)B落在B′,在下圖中畫出旋轉(zhuǎn)后的△ABC.

(2)直接寫出AB的長(zhǎng),AB=___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:AB、CD 是圓O 的兩條直徑,且∠AOD =α0° < α < 90°),點(diǎn)P是扇形AOD內(nèi)任意一點(diǎn).點(diǎn)PAB、CD所在直線依次輪流作為對(duì)稱軸翻折,將點(diǎn)P關(guān)于AB對(duì)稱的點(diǎn)記為點(diǎn)P1 ,點(diǎn)P1關(guān)CD 對(duì)稱的點(diǎn)記為點(diǎn)P2,點(diǎn) P2 關(guān)于AB 對(duì)稱的點(diǎn)記為點(diǎn)P3,….

1)根據(jù)所給圖中點(diǎn)P 的位置,分別畫出點(diǎn) P 1、P 1;(不寫作圖步驟,但要保留作圖痕跡)

2)分別聯(lián)結(jié)OP、OP1OP2,那么線段OP、OP1OP2 之間的數(shù)量關(guān)系是:OP OP1 OP2(填空,不要求寫出過(guò)程);

3)由(1)、(2)可知,點(diǎn) P 繞點(diǎn)O旋轉(zhuǎn)可以到達(dá)點(diǎn)P2的位置,如果 α=60°OP= a,求線段 OP順時(shí)針旋轉(zhuǎn)到OP2 過(guò)程中掃過(guò)的面積;

4)在 α 取某些特定值的時(shí)候,如果按照這樣的方式翻折,總能得到一點(diǎn)Pn與點(diǎn)P 重合, 求當(dāng)n =12,點(diǎn) P12 與點(diǎn)P 第一次重合時(shí) α 的值.(直接寫出結(jié)果,不要求寫出過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探索與發(fā)現(xiàn)

(1)正方形ABCD中有菱形PEFG,當(dāng)它們的對(duì)角線重合,且點(diǎn)P與點(diǎn)B重合時(shí)(如圖1),通過(guò)觀察或測(cè)量,猜想線段AECG的數(shù)量關(guān)系,并證明你的猜想;

(2)當(dāng)(1)中的菱形PEFG沿著正方形ABCD的對(duì)角線平移到如圖2的位置時(shí),猜想線段AECG的數(shù)量關(guān)系,只寫出猜想不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB、C三地在同一條路上,A地在B地的正南方3千米處,甲、乙兩人分別從AB兩地向正北方向的目的地C勻速直行,他們分別和A地的距離s(千米)與所用的時(shí)間t(小時(shí))的函數(shù)關(guān)系如圖所示.

(1)圖中的線段l1 (填)的函數(shù)圖象,C地在B地的正北方向 千米處;

(2)誰(shuí)先到達(dá)C地?并求出甲乙兩人到達(dá)C地的時(shí)間差;

(3)如果速度慢的人在兩人相遇后立刻提速,并且比先到者晚1小時(shí)到達(dá)C地,求他提速后的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別是AD、BC的中點(diǎn),連接AFBE交于點(diǎn)G,連接CE、DF交于點(diǎn)H.

1)求證:四邊形EGFH為平行四邊形;

2)當(dāng)= 時(shí),四邊形EGFH為矩形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形OABC的邊長(zhǎng)為6,點(diǎn)AC分別在x軸,y軸的正半軸上,點(diǎn)D2,0)在OA上,POB上一動(dòng)點(diǎn),則PA+PD的最小值為__

查看答案和解析>>

同步練習(xí)冊(cè)答案