【題目】如圖,點DO上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD

1)判斷直線CDO的位置關系,并說明理由;

2)過點BO的切線BE交直線CD于點E,若BE5,CD8,求O的半徑.

【答案】1)直線CDO的位置關系是相切,理由見解析;(2O的半徑為

【解析】

1)因為直徑所對的圓周角是90°,所以ADB90°,所以∠DAB+DBA90°,

又因為ODOA,所以得出DAB=∠ADO,之后進一步求解即可。

(2)根據(jù)CDO的切線,BEO的切線,所以得出DEBE5,∠CBE90°=∠CDO,再利用勾股定理求出BC的長,進一步證明COD∽△CEB,之后利用相似三角形性質求解即可。

1)直線CDO的位置關系是相切,理由如下:

ABO的直徑,

∴∠ADB90°,

∴∠DAB+DBA90°,

∵∠CDA=∠CBD

∴∠DAB+CDA90°,

ODOA

∴∠DAB=∠ADO,

∴∠CDA+ADO90°,

即∠CDO90°,

ODCE

∴直線CDO的切線;

2)∵CDO的切線,BEO的切線,

DEBE5,∠CBE90°=∠CDO

CECD+DE13,

BC,

∵∠C=∠C,∴△COD∽△CEB,

,即,

解得:OC

OBBCOC ,

O的半徑為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某游樂園有一個直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向為x軸,噴水池中心為原點建立直角坐標系.

(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達式;

(2)王師傅在噴水池內(nèi)維修設備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心多少米以內(nèi)?

(3)經(jīng)檢修評估,游樂園決定對噴水設施做如下設計改進:在噴出水柱的形狀不變的前提下,把水池的直徑擴大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請?zhí)骄繑U建改造后噴水池水柱的最大高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線軸的負半軸交于點、與軸交于點,且.

(1)求的值;

(2)如果點是拋物線上一點,聯(lián)結軸正半軸于點,,求的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點C在⊙O上,延長BC至點D,使DC=CB,延長DA

與⊙O的另一個交點為E,連結ACCE。

1)求證:B=D;

2)若AB=4BC-AC=2,求CE的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】音樂噴泉(圖1)可以使噴水造型隨音樂的節(jié)奏起伏變化而變化.某種音樂噴泉形狀如拋物線,設其出水口為原點,出水口離岸邊18m,音樂變化時,拋物線的頂點在直線y=kx上變動,從而產(chǎn)生一組不同的拋物線(圖2),這組拋物線的統(tǒng)一形式為y=ax2+bx.

(1)若已知k=1,且噴出的拋物線水線最大高度達3m,求此時a、b的值;

(2)若k=1,噴出的水恰好達到岸邊,則此時噴出的拋物線水線最大高度是多少米?

(3)若k=3,a=﹣,則噴出的拋物線水線能否達到岸邊?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在慈善一日捐活動中,學校團總支為了了解本校學生的捐款情況,隨機抽取了50名學生的捐款數(shù)進行了統(tǒng)計,并繪制成下面的統(tǒng)計圖.

1)這50名同學捐款的眾數(shù)為     元,中位數(shù)為     元;

2)該校共有600名學生參與捐款,請估計該校學生的捐款總數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個等腰三角形的三邊長均滿足方程x2-6x+8=0,則此三角形的周長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦BC=6cm,AC=8cm.若動點P2cm/s的速度從B點出發(fā)沿著B→A的方向運動,點Q1cm/s的速度從A點出發(fā)沿著A→C的方向運動,當點P到達點A時,點Q也隨之停止運動.設運動時間為t(s),當APQ是直角三角形時,t的值為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一拱形公路橋,圓弧形橋拱的水面跨度AB=80 m,橋拱到水面的最大高度為20 m.(1)求橋拱的半徑.

(2)現(xiàn)有一艘寬60 m,頂部截面為長方形且高出水面9 m的輪船要經(jīng)過這座拱橋,這艘輪船能順利通過嗎?請說明理由.

查看答案和解析>>

同步練習冊答案