【題目】如圖,在RtABC中,∠ABC90°,∠BAC30°,BC2,點DAC邊的中點,E是直線BC上一動點,將線段DE繞點D逆時針旋轉(zhuǎn)90°得到線段DF,連接AF、EF,在點E的運動過程中線段AF的最小值為_____

【答案】+1

【解析】

如圖,作DMBCM,FJDMJABN.首先說明點F在直線l上運動(直線l與直線AB之間的距離為),根據(jù)垂線段最短可知,當AF⊥直線l時,AF的值最短,最小值為.

解:如圖,作DM⊥BCMFJ⊥DMJABN

∵Rt△ABC中,∠ABC90°,∠BAC30°BC2,

∴AC2BC4,ABBC2

∵ADDCDM∥AB,

∴DMAB,BMCM1,

易證四邊形BMJN是矩形,

∴JNBM1,

∵∠FDJ+∠EDM90°∠EDM+∠DEM90°,

∴∠FDJ∠DEM∵∠FJD∠DME90°,

∴△FJD≌△DME(AAS),

∴FJDM,

∴FNFJ+JN1+,

F在直線l上運動(直線l與直線AB之間的距離為+1),

根據(jù)垂線段最短可知,當AF⊥直線l時,AF的值最短,最小值為:+1

故答案為:+1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】對于平面內(nèi)的點 P 和圖形 M,給出如下定義:以點 P 為圓心,以 r 為半徑作⊙P,使得圖形 M 上的所有點都在⊙P 的內(nèi)部(或邊上),當 r 最小時,稱⊙P 為圖形 M P 控制圓,此時,⊙P 的半徑稱為圖形 M P 點控制半徑.已知,在平面直角坐標系中, 正方形 OABC 的位置如圖所示,其中點 B2,2

1)已知點 D1,0),正方形 OABC D 點控制半徑為 r1,正方形 OABC A 控制半徑為 r2,請比較大。r1 r2;

2)連接 OB,點 F 是線段 OB 上的點,直線 ly= x+b;若存在正方形 OABC F點控制圓與直線 l 有兩個交點,求 b 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形紙片ABCD中,已知AD=8AB=6,E是邊BC上的點,以AE為折痕折疊紙片,使點B落在點F處,連接FC,當△EFC為直角三角形時,BE的長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】目前世界上最高的電視塔是廣州新電視塔.如圖所示,新電視塔高AB610米,遠處有一棟大樓,某人在樓底C處測得塔頂B的仰角為45°,在樓頂D處測得塔頂B的仰角為39°

1)求大樓與電視塔之間的距離AC;

2)求大樓的高度CD(精確到1米).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,以為直徑的于點,

1)判斷的位置關(guān)系,并說明理由;

2)求證:;

3)在上取一點,若,,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】合與實踐﹣﹣探究圖形中角之間的等量關(guān)系及相關(guān)問題.

問題情境:

正方形ABCD中,點P是射線DB上的一個動點,過點CCEAP于點E,點Q與點P關(guān)于點E對稱,連接CQ,設(shè)∠DAPα(0°<α135°),∠QCEβ

初步探究:

(1)如圖1,為探究αβ的關(guān)系,勤思小組的同學畫出了0°<α45°時的情形,射線AP與邊CD交于點F.他們得出此時αβ的關(guān)系是β.借助這一結(jié)論可得當點Q恰好落在線段BC的延長線上(如圖2)時,α   °,β   °;

深入探究:

(2)敏學小組的同學畫出45°<α90°時的圖形如圖3,射線AP與邊BC交于點G.請猜想此時αβ之間的等量關(guān)系,并證明結(jié)論;

拓展延伸:

(3)請你借助圖4進一步探究:90°<α135°時,αβ之間的等量關(guān)系為   ;

已知正方形邊長為2,在點P運動過程中,當αβ時,PQ的長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+c經(jīng)過A(﹣10)、B50)、C0,﹣5)三點.

1)求拋物線的解析式和頂點坐標;

2)當0x5時,y的取值范圍為   ;

3)點P為拋物線上一點,若SPAB21,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(-4,0)B(0,3),一次函數(shù)與坐標軸分別交于C、D兩點,GCD上一點,且DGCG12,連接BG,當BG平分∠ABO時,則b的值為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線x軸負半軸相交于點A,與y軸正半軸相交于點B,直線lA、B兩點,點D為線段AB上一動點,過點D軸于點C,交拋物線于點E

1)求拋物線的解析式;

2)若拋物線與x軸正半軸交于點F,設(shè)點D的橫坐標為x,四邊形FAEB的面積為S,請寫出Sx的函數(shù)關(guān)系式,并判斷S是否存在最大值,如果存在,求出這個最大值;并寫出此時點E的坐標;如果不存在,請說明理由.

3)連接BE,是否存在點D,使得相似?若存在,求出點D的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案