【題目】閱讀下面材料:在數(shù)學(xué)課上,老師提出如下問題:
已知:如圖,CD是△ABC的高,
尺規(guī)作圖:在線段CD上求作點P,使∠APB=45°(保留作圖痕跡,寫出作法),
請回答:你推出∠APB=45°的依據(jù)是 .
【答案】作圖及作法見解析;一條弧所對的圓周角等于它所對圓心角的一半
【解析】
先作出AB的垂直平分線GH交AB于E,然后在GH上截取EF=AE,則有∠AFB=90°,再以F為圓心,AF的長為半徑畫圓交CD于一點即為點P,根據(jù)圓周角定理可得出∠APB=∠AFB=45°.
解:如圖,
(1)分別以點A和點B為圓心,大于AB的長為半徑作弧,兩弧相交于G、H兩點;
(2)作直線GH交AB于點E;
(3)在直線GH截取EF=AE;
(4)以點F為圓心,AF的長為半徑畫圓交CD于點P.
則點P即為所求.
由作法可知GH垂直平分AB,AE=EF=BE,得到∠AFB=90°,
∴根據(jù)圓周角定理得到∠APB=∠AFB=45°.
故答案為:一條弧所對的圓周角等于它所對圓心角的一半.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們將、稱為一對“對偶式”,因為,所以構(gòu)造“對偶式”再將其相乘可以有效的將和中的“”去掉.于是二次根式除法可以這樣解:如,.像這樣,通過分子,分母同乘以一個式子把分母中的根號化去或把根號中的分母化去,叫做分母有理化.根據(jù)以上材料,理解并運用材料提供的方法,解答以下問題:
(1)比較大小________(用“”、“”或“”填空);
(2)已知,,求的值;
(3)計算:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是半圓的直徑,,.是弧上的一個動點(含端點,不含端點),連接,過點作于,連接,在點移動的過程中,的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,點B位于(4,0)、(5,0)之間,與y軸交于點C,對稱軸為直線x=2,直線y=﹣x+c與拋物線y=ax2+bx+c交于C,D兩點,D點在x軸上方且橫坐標(biāo)小于5,則下列結(jié)論:①4a+b+c>0;②a﹣b+c<0;③m(am+b)<4a+2b(其中m為任意實數(shù));④a<﹣1,其中正確的是( )
A.①②③④B.①②③C.①②④D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展“我最喜愛的一項體育活動”調(diào)查,要求每名學(xué)生必選且只能選一項.現(xiàn)隨機抽查了部分學(xué)生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖.
抽取的學(xué)生最喜歡體育活動的條形統(tǒng)計圖
抽取的學(xué)生最喜歡體育活動的扇形統(tǒng)計圖
請結(jié)合以上信息解答下列問題:
(1)在這次調(diào)查中一共抽查了_____學(xué)生,扇形統(tǒng)計圖中“乒乓球”所對應(yīng)的圓心角為_____度,并請補全條形統(tǒng)計圖;
(2)己知該校共有1200名學(xué)生,請你估計該校最喜愛跑步的學(xué)生人數(shù);
(3)若在“排球、足球、跑步、乒乓球”四個活動項目任選兩項設(shè)立課外興趣小組,請用列表法或畫樹狀圖的方法求恰好選中“排球、乒乓球”這兩項活動的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與x軸交于A、B兩點,與y軸交于C,其中B(4,0),C(0,2),點P為拋物線上一動點,過點P作PQ平行BC交拋物線于Q.
(1)求拋物線的解析式;
(2)①當(dāng)P、Q兩點重合時,PQ所在直線解析式為 ;②在①的條件下,取線段BC中點M,連接PM,判斷以點P、O、M、B為頂點的四邊形是什么四邊形,并說明理由?
(3)已知N(0,),連接BN,K(3,0),KE∥y軸,交BN于E,x軸上有一動點F,∠EFN=60°,求OF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2014山東淄博)如圖,四邊形ABCD中,AC⊥BD交BD于點E,點F,M分別是AB,BC的中點,BN平分∠ABE交AM于點N,AB=AC=BD,連接MF,NF.
(1)判斷△BMN的形狀,并證明你的結(jié)論;
(2)判斷△MFN與△BDC之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是直徑AB上的一點,AB=6,CP⊥AB交半圓于點C,以BC為直角邊構(gòu)造等腰Rt△BCD,∠BCD=90°,連接OD.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對線段AP,BC,OD的長度之間的關(guān)系進行了探究.
下面是小明的探究過程,請補充完整:
(1)對于點P在AB上的不同位置,畫圖、測量,得到了線段AP,BC,OD的長度的幾組值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置… | |
AP | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | … |
BC | 6.00 | 5.48 | 4.90 | 4.24 | 3.46 | 2.45 | … |
OD | 6.71 | 7.24 | 7.07 | 6.71 | 6.16 | 5.33 | … |
在AP,BC,OD的長度這三個量中,確定________的長度是自變量,________的長度和________的長度都是這個自變量的函數(shù);
(2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定的函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)OD=2BC時,線段AP的長度約為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com