【題目】在下面的兩位數(shù)18, 27,36, 45,54,63,7281,99都是9的整數(shù)倍,小明發(fā)現(xiàn)這些數(shù)的個(gè)位數(shù)字與十位數(shù)字的和也都是9的整數(shù)倍,例如18的的個(gè)位數(shù)字8與十位數(shù)字1的和是9.于是小明有了這樣的結(jié)論:個(gè)位數(shù)字與十位數(shù)字的和是9的倍數(shù)的兩位數(shù)一定是9的倍數(shù).小明經(jīng)過思考后給出了如下的證明:

設(shè)十位上的數(shù)字為,個(gè)位上的數(shù)字為,并且為正整數(shù))

那么這個(gè)兩位數(shù)可表示為

∴這個(gè)兩位數(shù)是9的倍數(shù)

小明猜想:個(gè)位數(shù)字與十位數(shù)字與百位數(shù)字的和是9的倍數(shù)的三位數(shù)也一定是9的倍數(shù).小明的這個(gè)猜想的結(jié)論是否正確?若正確模仿小明的證明思路給出證明,若不正確舉出反例.

【答案】猜想的結(jié)論正確,見解析

【解析】

設(shè)百位上的數(shù)字為a,十位上的數(shù)字為b,個(gè)位上的數(shù)字為c,可得,然后根據(jù)多位數(shù)的表示法表示出這個(gè)三位數(shù)整理即可.

解:猜想的結(jié)論正確,

證明:設(shè)百位上的數(shù)字為a,十位上的數(shù)字為b,個(gè)位上的數(shù)字為c,并且n為正整數(shù)),

那么這個(gè)三位數(shù)可表示為

===,

這個(gè)三位數(shù)是9的倍數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)分別在下列圖中使用無刻度的直尺按要求畫圖.

1)在圖1中,點(diǎn)PABCDAD上的中點(diǎn),過點(diǎn)P畫一條線段PM,使PMAB

2)在圖2中,點(diǎn)A、D分別是BCEFFBEC上的中點(diǎn),且點(diǎn)P是邊EC上的動(dòng)點(diǎn),畫出△PAB的一條中位線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在證明“已知:如圖,,,.求證:.”時(shí),兩位同學(xué)的證法如下:

證法一:由勾股定理,得

,

的面積的面積

的面積的面積

證法二:

,

1)反思:上述兩位同學(xué)的證法中,有一位同學(xué)已完成的證明部分有一處錯(cuò)誤,請(qǐng)把錯(cuò)誤序號(hào)寫出.

2)請(qǐng)你選擇其中一種證法,完成證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓的內(nèi)接五邊形ABCDE中,ADBE交于點(diǎn)NABEC的延長線交于點(diǎn)M,CDBE,BCADBMBC1,點(diǎn)D的中點(diǎn).

1)求證:BCDE;

2)求證:AE是圓的直徑;

3)求圓的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°ABC的平分線交AC于點(diǎn)E,過點(diǎn)EBE的垂線交AB于點(diǎn)F,OBEF的外接圓.

1)求證:ACO的切線;

2)過點(diǎn)EEHAB,垂足為H,求證:CD=HF;

3)若CD=1,EH=3,求BFAF長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形ABCD的邊長為4cm,A=120°,則菱形ABCD的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,EAD的中點(diǎn),已知DEF的面積為1,則平行四邊形ABCD的面積為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB4AD10,EAD的一點(diǎn),且AE2,MAB上一點(diǎn),射線MECD的延長線于點(diǎn)FEGMEBC于點(diǎn)G,連接MG,FG,FGAD于點(diǎn)N

1)當(dāng)點(diǎn)MAB中點(diǎn)時(shí),則DF   FG   .(直接寫出答案)

2)在整個(gè)運(yùn)動(dòng)過程中,的值是否會(huì)變化,若不變,求出它的值;若變化,請(qǐng)說明理由.

3)若△EGN為等腰三角形時(shí),請(qǐng)求出所有滿足條件的AM的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐

如圖①,在中中,,,,過點(diǎn),將繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn),得到,連接,,記旋轉(zhuǎn)角為

1)問題發(fā)現(xiàn)

如圖②,當(dāng)時(shí),__________;如圖③,當(dāng)時(shí),__________

2)拓展探究

試判斷:當(dāng)時(shí),的大小有無變化?請(qǐng)僅就圖④的情形給出證明.

3)問題解決

如圖⑤,當(dāng)繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至點(diǎn)落在邊上時(shí),求線段的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案