【題目】如圖1,直線與軸交于點,與軸交于點拋物線經(jīng)過點、.
(1)求點的坐標(biāo)和拋物線的解析式.
(2)為軸上一個動點,過點垂直于軸的直線與直線和拋物線分別交于點、.
①點在線段上運動,若以、、為頂點的三角形與相似,求點的坐標(biāo);
②點在軸上自由運動,若三個點、、中恰有一點是其他兩點所連線段的中點(三點重合除外),則稱、、三點為“共諧點”.請直接寫出使得、、三點成為“共諧點”的的值.
【答案】(1);拋物線的解析式為;
(2)①點的坐標(biāo)為或;②或或.
【解析】
(1)利用待定系數(shù)法即可解決問題;
(2)②先根據(jù)題意確定N點坐標(biāo),再根據(jù)(1)所得直線AB的解析式,確定OA,OB的長度,若使和相似,則必須或,然后分類討論即可;
②根據(jù)題意直接寫成m的取值即可.
解:(1)∵直線與軸交于點,∴,解得,∴.
∵拋物線經(jīng)過點,∴,
∴,∴拋物線的解析式為.
(2)∵軸,,,∴.
①由(1)知直線的解析式為,,.
在和中,∵,,∴若使和相似,則必須或,分兩種情況討論如下:
(Ⅰ)當(dāng)時,過點作軸于點,則,,.
∵,∴,∴,∴.
∴,即,解得(舍去)或,
∴.
(Ⅱ)當(dāng)時,,∴點的縱坐標(biāo)為2,∴,解得(舍去)或,∴.
綜上,點的坐標(biāo)為或.
②或或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知O為圓錐的頂點,M為圓錐底面上一點,點P在OM上.一只蝸牛從P點出發(fā),繞圓錐側(cè)面爬行,回到P點時所爬過的最短路線的痕跡如圖所示.若沿OM將圓錐側(cè)面剪開并展開,所得側(cè)面展開圖是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①拋物線y=ax2+bx+3(a≠0)與x軸,y軸分別交于點A(﹣1,0),B(3,0),點C三點.
(1)試求拋物線的解析式;
(2)點D(2,m)在第一象限的拋物線上,連接BC,BD.試問,在對稱軸左側(cè)的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標(biāo);如果不存在,請說明理由;
(3)點N在拋物線的對稱軸上,點M在拋物線上,當(dāng)以M、N、B、C為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線AB是拋物線的一部分(其中A是拋物線與y軸的交點,B是頂點),曲線BC是雙曲線的一部分.曲線AB與BC組成圖形W由點C開始不斷重復(fù)圖形W形成一組“波浪線”.若點,在該“波浪線”上,則m的值為________,n的最大值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系中的圖形M,N,給出如下定義:如果點P為圖形M上任意一點,點Q為圖形N上任意一點,那么稱線段PQ長度的最小值為圖形M,N的“近距離”,記作 d(M,N).若圖形M,N的“近距離”小于或等于1,則稱圖形M,N互為“可及圖形”.
(1)當(dāng)⊙O的半徑為2時,
①如果點A(0,1),B(3,4),那么d(A,⊙O)=_______,d(B,⊙O)= ________;
②如果直線與⊙O互為“可及圖形”,求b的取值范圍;
(2)⊙G的圓心G在軸上,半徑為1,直線與x軸交于點C,與y軸交于點D,如果⊙G和∠CDO互為“可及圖形”,直接寫出圓心G的橫坐標(biāo)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD的邊AB=4,邊AD上有一點M,連接BM,將MB繞M點逆時針旋轉(zhuǎn)90°得MN,N恰好落在CD上,過M、D、N作⊙O,⊙O與BC相切,Q為⊙O上的動點,連BQ,P為BQ中點,連AP,則AP的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與y軸交于點,與反比例函數(shù)在第二象限內(nèi)的圖象相交于點.
(1)求直線AB的解析式;
(2)將直線AB向下平移9個單位后與反比例函數(shù)的圖象交于點C和點E,與y軸交于點D,求的面積;
(3)設(shè)直線CD的解析式為,根據(jù)圖象直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是矩形ABCD的邊上一動點,矩形兩邊長AB、BC長分別為15和20,那么P到矩形兩條對角線AC和BD的距離之和是( 。
A.6B.12C.24D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 (a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程 的兩個根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時,x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時,y隨x增大而增大
其中結(jié)論正確的個數(shù)是( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com