【題目】已知,如圖1,D是△ABC的邊上一點,CN∥AB,DN交AC于點M,MA=MC.
(1)求證:四邊形ADCN是平行四邊形.
(2)如圖2,若∠AMD=2∠MCD,∠ACB=90°,AC=BC.請寫出圖中所有與線段AN相等的線段(線段AN除外)
【答案】(1)證明見解析;(2)AN=AD=BD=CD=CN.
【解析】
(1)由CN∥AB,MA=MC,易證得△AMD≌△CMN,則可得MD=MN,即可證得四邊形ADCN是平行四邊形.
(2)由∠AMD=2∠MCD,可證得四邊形ADCN是矩形,又由∠ACB=90°,AC=BC,可得四邊形ADCN是正方形,繼而求得答案.
(1)證明:∵CN∥AB,
∴∠DAM=∠NCM,
在△ADM和△CNM中,
,
∴△AMD≌△CMN(ASA),
∴MD=MN,
又MA=MC,
∴四邊形ADCN是平行四邊形.
(2)解:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,
∴∠MCD=∠MDC,
∴MC=MD,
∴AC=DN,
∴ADCN是矩形,
∵AC=BC,
∴AD=BD,
∵∠ACB=90°,
∴CD=AD=BD=AB,
∴ADCN是正方形,
∴AN=AD=BD=CD=CN.
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,∠ACB=90°,將AB邊繞點B順時針旋轉(zhuǎn)90°得線段BD.過點D作DM⊥BC交BC延長線于M,
(1)如圖1,請判斷線段AC、CM、MD的數(shù)量關系并說明理由;
(2)E為DM延長線上一點,當點E為如圖2所示的位置時,以AE為斜邊向右側(cè)作等腰Rt△AFE,再過點F作FN⊥DM于N,探究BM、FN、MN三條線段的數(shù)量關系,并說明理由;
(3)在問題(2)的條件下,當點E運動到某一位置時點B、A、F三點恰好在同一直線上,取DE中點P,連接AP,且AB=3,AF=1,請直接寫出AP的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:一元二次方程有兩個不相等的實數(shù)根.
(1)求的取值范圍;
(2)設是方程的兩個不相等的實數(shù)根,且滿足.求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,,點從點出發(fā)沿方向以每秒2個單位長度的速度向點勻速運動,同時點從點出發(fā)沿方向以每秒1個單位長度的速度向點勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點運動的時間是秒.過點作于點,連接.
(1)______.(用含的代數(shù)式表示)
(2)四邊形能夠成為菱形嗎?如果能,求出相應的值;如果不能,請說明理由.
(3)當為何值時,為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,的頂點均在格點上,點的坐標為.
①把向上平移5個單位后得到對應的,畫出,并寫出的坐標;
②以原點為對稱中心,畫出與關于原點對稱的,并寫出點的坐標.
③以原點O為旋轉(zhuǎn)中心,畫出把順時針旋轉(zhuǎn)90°的圖形△A3B3C3,并寫出C3的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖網(wǎng)格圖中,每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)試在圖中作出△ABC以A為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△AB1C1;
(2)若點B的坐標為(﹣3,5),試在圖中畫出直角坐標系,并直接寫出A、C兩點的坐標;
(3)根據(jù)(2)的坐標系作出與△ABC關于原點對稱的圖形△A2B2C2,并直接寫出點A2、B2、C2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列判斷正確的是( ).
A.數(shù)據(jù)3,5,4,1,-2的中位數(shù)為4
B.從初三月考成績中抽取100名學生的數(shù)學成績,這100名學生是總體的一個樣本
C.甲、乙兩人各射靶5次,已知方差,,那么乙的射擊成績較穩(wěn)定
D.了解云南省昆明市居民疫情期間的出行方式,采用全面調(diào)查的方式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“書香校園”活動中,某校為了解學生家庭藏書情況,隨機抽取本校部分學生進行調(diào)查,并繪制成部分統(tǒng)計圖表如下:
類別 | 家庭藏書m本 | 學生人數(shù) |
A | 0≤m≤25 | 20 |
B | 26≤m≤100 | a |
C | 101≤m≤200 | 50 |
D | m≥201 | 66 |
根據(jù)以上信息,解答下列問題:
(1)該調(diào)查的樣本容量為_____,a=_____;
(2)在扇形統(tǒng)計圖中,“A”對應扇形的圓心角為_____°;
(3)若該校有2000名學生,請估計全校學生中家庭藏書200本以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校一課外活動小組為了了解學生最喜歡的球類運動況,隨機抽查了本校九年級的200名學生,調(diào)查的結(jié)果如圖所示,請根據(jù)該扇形統(tǒng)計圖解答以下問題:
(1)圖中的值是________;
(2)被查的200名生中最喜歡球運動的學生有________人;
(3)若由3名最喜歡籃球運動的學生(記為),1名最喜歡乒乓球運動的學生(記為),1名最喜歡足球運動的學生(記為)組隊外出參加一次聯(lián)誼活動.欲從中選出2人擔任組長(不分正副),列出所有可能情況,并求2人均是最喜歡籃球運動的學生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com