【題目】已知ab、c為正數(shù),若關(guān)于x的一元二次方程ax2+bx+c0有兩個(gè)實(shí)數(shù)根,則關(guān)于x的方程a2x2+b2x+c20解的情況為(  )

A.有兩個(gè)不相等的正根B.有一個(gè)正根,一個(gè)負(fù)根

C.有兩個(gè)不相等的負(fù)根D.不一定有實(shí)數(shù)根

【答案】C

【解析】

由方程ax2+bx+c0有兩個(gè)實(shí)數(shù)根可得出b24ac≥0,結(jié)合a、bc為正數(shù)可得出b44a2c20,進(jìn)而可得出關(guān)于x的方程a2x2+b2x+c20有兩個(gè)不相等的實(shí)數(shù)根,由根與系數(shù)的關(guān)系可得出該方程的兩根之和為負(fù)、兩根之積為正,進(jìn)而可得出關(guān)于x的方程a2x2+b2x+c20有兩個(gè)不相等的負(fù)根.

∵關(guān)于x的一元二次方程ax2+bx+c0有兩個(gè)實(shí)數(shù)根,

∴△=b24ac≥0

又∵ab、c為正數(shù),

b24ac+2acb22ac0b2+2ac0

∵方程a2x2+b2x+c20的根的判別式b44a2c2(b2+2ac)(b22ac)0,

∴該方程有兩個(gè)不相等的實(shí)數(shù)根.

設(shè)關(guān)于x的方程a2x2+b2x+c20的兩個(gè)實(shí)數(shù)根為x1,x2,

x1+x20,x1x20,

∴關(guān)于x的方程a2x2+b2x+c20有兩個(gè)不相等的負(fù)根.

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017江西。┤鐖D1,研究發(fā)現(xiàn),科學(xué)使用電腦時(shí),望向熒光屏幕畫(huà)面的視線角”α約為20°,而當(dāng)手指接觸鍵盤(pán)時(shí),肘部形成的手肘角”β約為100°.圖2是其側(cè)面簡(jiǎn)化示意圖,其中視線AB水平,且與屏幕BC垂直.

(1)若屏幕上下寬BC=20cm,科學(xué)使用電腦時(shí),求眼睛與屏幕的最短距離AB的長(zhǎng);

(2)若肩膀到水平地面的距離DG=100cm,上臂DE=30cm,下臂EF水平放置在鍵盤(pán)上,其到地面的距離FH=72cm.請(qǐng)判斷此時(shí)β是否符合科學(xué)要求的100°?

(參考數(shù)據(jù):sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有結(jié)果精確到個(gè)位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平行四邊形對(duì)角線交于點(diǎn)邊分別為邊長(zhǎng)作正方形正方形,連接

1)求證:

2)若,請(qǐng)求出的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)(12),(53),則下列說(shuō)法正確的是( 。

①拋物線與y軸有交點(diǎn)

②若拋物線經(jīng)過(guò)點(diǎn)(2,2),則拋物線的開(kāi)口向上

③拋物線的對(duì)稱軸不可能是x=3

④若拋物線的對(duì)稱軸是x=4,則拋物線與x軸有交點(diǎn)

A.①②③④B.①②③C.①③④D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 某網(wǎng)店銷(xiāo)售一種產(chǎn)品.這種產(chǎn)品的成本價(jià)為10/件,已知銷(xiāo)售價(jià)不低于成本價(jià),且物價(jià)部門(mén)規(guī)定這種產(chǎn)品的銷(xiāo)售價(jià)不高于18/件市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷(xiāo)售量y(件)與銷(xiāo)售價(jià)x(元/件)之間的函數(shù)關(guān)系如圖所示:

1)當(dāng)12x18時(shí),求yx之間的函數(shù)關(guān)系式;

2)求每天的銷(xiāo)售利潤(rùn)w(元)與銷(xiāo)售價(jià)x(元/件)之間的函數(shù)關(guān)系式并求出每件銷(xiāo)售價(jià)為多少元時(shí).每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠BAC=60°,AD平分∠BAC交邊BC于點(diǎn)D,分別過(guò)DDEAC交邊AB于點(diǎn)E,DFAB交邊AC于點(diǎn)F

(1)如圖1,試判斷四邊形AEDF的形狀,并說(shuō)明理由;

(2)如圖2,若AD=4,點(diǎn)H,G分別在線段AE,AF上,且EH=AG=3,連接EGAD于點(diǎn)M,連接FHEG于點(diǎn)N

(i)ENEG的值;

(ii)將線段DM繞點(diǎn)D順時(shí)針旋轉(zhuǎn)60°得到線段DM,求證:H,F,M三點(diǎn)在同一條直線上

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+mm為常數(shù))的圖象與x軸交于A(﹣3,0),與y軸交于點(diǎn)C.以直線x=﹣1為對(duì)稱軸的拋物線yax2+bx+ca,b,c為常數(shù),且a0)經(jīng)過(guò)A,C兩點(diǎn),與x軸正半軸交于點(diǎn)B
1)求一次函數(shù)及拋物線的函數(shù)表達(dá)式;

2P為線段AC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)PC、A不重合)過(guò)Px軸的垂線與這個(gè)二次函數(shù)的圖象交于點(diǎn)D,連接CDAD,點(diǎn)P的橫坐標(biāo)為n,當(dāng)n為多少時(shí),CDA的面積最大,最大面積為多少?

3)在對(duì)稱軸上是否存在一點(diǎn)E,使∠ACB=∠AEB?若存在,求點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點(diǎn),FAM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長(zhǎng)線于點(diǎn)E,交DC于點(diǎn)N

1)求證:△ABM∽△EFA

2)若AB=12,BM=5,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1、圖2是兩張形狀、大小完全相同的方格紙,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).

1)在圖1中畫(huà)出等腰直角三角形MON,使點(diǎn)N在格點(diǎn)上,且∠MON=90°;

2)在圖2中以格點(diǎn)為頂點(diǎn)畫(huà)一個(gè)正方形ABCD,使正方形ABCD面積等于(1)中等腰直角三角形MON面積的4倍,并將正方形ABCD分割成以格點(diǎn)為頂點(diǎn)的四個(gè)全等的直角三角形和一個(gè)正方形,且正方形ABCD面積沒(méi)有剩余(畫(huà)出一種即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案