【題目】如圖,第一象限內(nèi)半徑為2的⊙C與y軸相切于點(diǎn)A,作直徑AD,過點(diǎn)D作⊙C的切線l交x軸于點(diǎn)B,P為直線l上一動(dòng)點(diǎn),已知直線PA的解析式為:y=kx+3.
(1)設(shè)點(diǎn)P的縱坐標(biāo)為p,寫出p隨k變化的函數(shù)關(guān)系式.
(2)設(shè)⊙C與PA交于點(diǎn)M,與AB交于點(diǎn)N,則不論動(dòng)點(diǎn)P處于直線l上(除點(diǎn)B以外)的什么位置時(shí),都有△AMN∽△ABP.請(qǐng)你對(duì)于點(diǎn)P處于圖中位置時(shí)的兩三角形相似給予證明;
(3)是否存在使△AMN的面積等于的k值?若存在,請(qǐng)求出符合的k值;若不存在,請(qǐng)說明理由.
【答案】(1) p=4k+3;(2)見解析;(3) 存在,k=2±或k=﹣2時(shí),△AMN的面積等于,理由見解析
【解析】
(1)由切線的性質(zhì)知∠AOB=∠OAD=∠ADB=90°,所以可以判定四邊形OADB是矩形;根據(jù)⊙O的半徑是2求得直徑AD=4,從而求得點(diǎn)P的坐標(biāo),將其代入直線方程y=kx+3即可知p變化的函數(shù)關(guān)系式;
(2)連接DN.∵直徑所對(duì)的圓周角是直角,∴∠AND=90°,根據(jù)圖示易證∠AND=∠ABD;然后根據(jù)同弧所對(duì)的圓周角相等推知∠ADN=∠AMN,再由等量代換可知∠ABD=∠AMN;最后利用相似三角形的判定定理AA證明△AMN∽△ABP;
(3)存在.把x=0代入y=kx+3得y=3,即OA=BD=3,然后由勾股定理求得AB=5;又由相似三角形的相似比推知相似三角形的面積比.分兩種情況進(jìn)行討論:①當(dāng)點(diǎn)P在B點(diǎn)上方時(shí),由相似三角形的面積比得到k24k2=0,解關(guān)于k的一元二次方程;②當(dāng)點(diǎn)P在B點(diǎn)下方時(shí),由相似三角形的面積比得到k2+1=(4k+3),解關(guān)于k的一元二次方程.
(1)∵y軸和直線l都是⊙C的切線,∴OA⊥AD,BD⊥AD;又∵OA⊥OB,
∴∠AOB=∠OAD=∠ADB=90°,∴四邊形OADB是矩形;∵⊙C的半徑為2,∴AD=OB=4;
∵點(diǎn)P在直線l上,∴點(diǎn)P的坐標(biāo)為(4,p);又∵點(diǎn)P也在直線AP上,∴p=4k+3;
(2)連接DN.∵AD是⊙C的直徑,∴∠AND=90°,
∵∠ADN=90°﹣∠DAN,∠ABD=90°﹣∠DAN,∴∠ADN=∠ABD,又∵∠ADN=∠AMN,
∴∠ABD=∠AMN,∵∠MAN=∠BAP,∴△AMN∽△ABP
(3)存在.理由:把x=0代入y=kx+3得:y=3,即OA=BD=3,AB=,
∵S△ABD=ABDN=ADDB∴DN==,∴AN2=AD2﹣DN2=,
∵△AMN∽△ABP,∴,即
當(dāng)點(diǎn)P在B點(diǎn)上方時(shí),∵AP2=AD2+PD2=AD2+(PB﹣BD)2=42+(4k+3﹣3)2=16(k2+1),
或AP2=AD2+PD2=AD2+(BD﹣PB)2=42+(3﹣4k﹣3)2=16(k2+1),
S△ABP=PBAD=(4k+3)×4=2(4k+3),
∴,
整理得:k2﹣4k﹣2=0,解得k1=2+,k2=2﹣
當(dāng)點(diǎn)P在B點(diǎn)下方時(shí),
∵AP2=AD2+PD2=42+(3﹣4k﹣3)2=16(k2+1),S△ABP=PBAD=[﹣(4k+3)]×4=﹣2(4k+3)
∴
化簡(jiǎn)得:k2+1=﹣(4k+3),解得:k=﹣2,
綜合以上所得,當(dāng)k=2±或k=﹣2時(shí),△AMN的面積等于
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,過點(diǎn)B的直線與對(duì)角線AC、邊AD分別交于點(diǎn)E和F.過點(diǎn)E作EG∥BC,交AB于G,則圖中相似三角形有( )
A. 7對(duì) B. 6對(duì) C. 5對(duì) D. 4對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:
(1)寫出方程ax2+bx+c=0的兩個(gè)根;
(2)寫出不等式ax2+bx+c<0的解集;
(3)若方程ax2+bx+c+k=0有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O上的點(diǎn),C是⊙O上的點(diǎn),點(diǎn)D在AB的延長(zhǎng)線上,∠BCD=∠BAC.
(1)求證:CD是⊙O的切線;
(2)若∠D=30°,BD=2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長(zhǎng)為4的正三角形,以AB邊作正方形ABDE,點(diǎn)P和點(diǎn)Q分別是線段AC和線段BC上的中點(diǎn),連接AQ和BP相交于點(diǎn)M,則點(diǎn)M到DE的距離是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點(diǎn),AE=CF,連接EF,BF,EF與對(duì)角線AC交于O點(diǎn),且BE=BF,∠BEF=2∠BAC。
(1)求證:OE=OF;
(2)若BC=,求AB的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,點(diǎn)O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點(diǎn)D,E,連結(jié)AD.已知∠CAD=∠B,
(1)求證:AD是⊙O的切線.
(2)若BC=8,tanB=,求⊙O 的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點(diǎn)A、B、C,請(qǐng)回答:
(1)該圓弧所在圓心D點(diǎn)的坐標(biāo)為 ;
(2)扇形DAC的圓心角度數(shù)為 ;
(3)若扇形DAC是某一個(gè)圓錐的側(cè)面展開圖,求該圓錐的高.(保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)E,F分別在邊BC,AC上,沿EF所在的直線折疊∠C,使點(diǎn)C的對(duì)應(yīng)點(diǎn)D恰好落在邊AB上,若△EFC和△ABC相似,則AD的長(zhǎng)為___.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com