【題目】如圖,已知二次函數(shù)的圖象過點O0,0).A8,4),與x軸交于另一點B,且對稱軸是直線x3

1)求該二次函數(shù)的解析式;

2)若MOB上的一點,作MNABOAN,當ANM面積最大時,求M的坐標;

3Px軸上的點,過PPQx軸與拋物線交于Q.過AACx軸于C,當以O,P,Q為頂點的三角形與以O,AC為頂點的三角形相似時,求P點的坐標.

【答案】1;(2)當t3時,SAMN有最大值3,此時M點坐標為(3,0);(3P點坐標為(14,0)或(﹣2,0)或(40)或(8,0).

【解析】

1)先利用拋物線的對稱性確定B6,0),然后設(shè)交點式求拋物線解析式;

2)設(shè)Mt,0),先其求出直線OA的解析式為直線AB的解析式為y=2x-12,直線MN的解析式為y=2x-2t,再通過解方程組N),接著利用三角形面積公式,利用SAMN=SAOM-SNOM得到然后根據(jù)二次函數(shù)的性質(zhì)解決問題;

3)設(shè)Q,根據(jù)相似三角形的判定方法,當時,△PQO∽△COA,則;當時,△PQO∽△CAO,則,然后分別解關(guān)于m的絕對值方程可得到對應(yīng)的P點坐標.

解:(1)∵拋物線過原點,對稱軸是直線x3,

B點坐標為(6,0),

設(shè)拋物線解析式為yaxx6),

A8,4)代入得a824,解得a,

∴拋物線解析式為yxx6),即yx2x;

2)設(shè)Mt,0),

易得直線OA的解析式為yx,

設(shè)直線AB的解析式為ykx+b

B6,0),A8,4)代入得,解得

∴直線AB的解析式為y2x12,

MN/span>AB,

∴設(shè)直線MN的解析式為y2x+n,

Mt,0)代入得2t+n0,解得n=﹣2t,

∴直線MN的解析式為y2x2t

解方程組,則,

SAMNSAOMSNOM

,

t3時,SAMN有最大值3,此時M點坐標為(3,0);

3)設(shè),

∵∠OPQ=∠ACO,

∴當時,△PQO∽△COA,即

PQ2PO,即

解方程m10(舍去),m214,此時P點坐標為(140);

解方程m10(舍去),m2=﹣2,此時P點坐標為(﹣2,0);

∴當時,△PQO∽△CAO,即,

PQPO,即

解方程m10(舍去),m28,此時P點坐標為(8,0);

解方程m10(舍去),m24,此時P點坐標為(40);

綜上所述,P點坐標為(14,0)或(﹣20)或(4,0)或(8,0).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,單位長度為1的網(wǎng)格坐標系中,一次函數(shù) 與坐標軸交于A、B兩點,反比例函數(shù)x0)經(jīng)過一次函數(shù)上一點C2,a).

1)求反比例函數(shù)解析式,并用平滑曲線描繪出反比例函數(shù)圖像;

2)依據(jù)圖像直接寫出當時不等式的解集;

3)若反比例函數(shù)與一次函數(shù)交于C、D兩點,使用直尺與2B鉛筆構(gòu)造以CD為頂點的矩形,且使得矩形的面積為10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著2020年重慶中招體育考試日益臨近,初三同學堅持每天鍛煉的熱情也愈發(fā)高漲,某班甲、乙兩名同學相約利用課余時間進行跳繩鍛煉.在一次鍛煉中,甲同學完成跳繩180個,乙同學完成跳繩200個,但乙同學所用時間比甲同學少10秒,兩入計算后得知:甲同學每秒比乙同學少跳繩1個,則本次鍛煉中甲同學每秒跳繩多少個?設(shè)甲同學每秒跳繩x個,則由題意可列方程為(

A.10B.10

C.10D.10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為豐富綜合實踐活動,開設(shè)了四個實驗室如下:A.物理;B.化學;C.信息;D.生物.為了解學生最喜歡哪個實驗室,隨機抽取了部分學生進行調(diào)查,每位被調(diào)查的學生都選擇了一個自己最喜歡的實驗室,調(diào)查后將調(diào)查結(jié)果繪制成了如圖統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題

1)求這次被調(diào)查的學生人數(shù).

2)請將條形統(tǒng)計圖補充完整.

3)求出扇形統(tǒng)計圖中B對應(yīng)的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】教育局為了了解初一學生參加社會實踐活動的天數(shù),隨機抽查本市部分初一學生參加社會實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖(如圖).請你根據(jù)圖中提供的信息,回答下列問題:

1)這次共抽取   名學生進行統(tǒng)計調(diào)查,補全條形圖;

2   ,該扇形所對圓心角的度數(shù)為   

3)如果該市有初一學生人,請你估計活動時間不少于的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解本校八年級學生數(shù)學學習情況,隨機抽查該年級若干名學生進行測試,然后把測試結(jié)果分為4個等級:A、B、C、D,并將統(tǒng)計結(jié)果繪制成兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息解答下列問題

1)補全條形統(tǒng)計圖

2)等級為D等的所在扇形的圓心角是   

3)如果八年級共有學生1800名,請你估算我校學生中數(shù)學學習A等和B等共多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A是反比例函數(shù)y=圖象在第一象限上的一點,連結(jié)AO并延長交圖象的另一分支于點B,延長BA至點C,過點CCDx軸,垂足為D,交反比例函數(shù)圖象于點E.若,△BDC的面積為6,則k=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑的O分別交AC、BC于點D、E,點FAC的延長線上,且∠CBFCAB

1)求證:直線BFO的切線;

2)若AB5,sinBAD,求AD的長;

3)試探究FBFD、FA之間的關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】麗商場銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.

(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?

(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么麗商場至少需購進多少件A種商品?

查看答案和解析>>

同步練習冊答案