【題目】已知四邊形OABC是菱形,CD⊥x軸,垂足為D,函數(shù) 的圖象經(jīng)過點C,且與AB交于點E,若OD=2,則△OCE的面積為 .
【答案】4
【解析】解:過點E作EF⊥x軸于點F,如圖所示.
∵OD=2,
∴點C的橫坐標為2,
∵點C在反比例函數(shù)y= 的圖象上,
∴點C的坐標為(2,4),
∴直線OC的解析式為y=2x,OC= =2 .
∵四邊形OABC是菱形,
∴OA=OC=2 ,
∴直線AB的解析式為y=2(x﹣2 )=2x﹣4 .
聯(lián)立直線AB的解析式和反比例函數(shù)解析式成方程組: ,
解得: (舍去),或 ,
∴點E的坐標為(3+ ,6﹣2 ).
S△OCE=S△OCD+S梯形CDFE﹣S△OEF=S梯形CDFE= (CD+EF)DF= (yC+yE)(xE﹣xC)= ×(4+6﹣2 )×(3+ ﹣2)=4 .
故答案為:4 .
由OD=2結(jié)合反比例函數(shù)的解析式可得出點C的坐標,由此即可得出直線OC的解析式和線段OC的長度,根據(jù)菱形的性質(zhì)結(jié)合平移的性質(zhì)即可得出直線AB的解析式,聯(lián)立直線AB的解析式與反比例函數(shù)的解析式成方程組,解方程組即可得出點E的坐標,再通過分割圖形求面積法找出S△OCE=S梯形CDFE , 利用梯形的面積公式即可得出結(jié)論.
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的口袋中裝有紅、白兩種顏色的小球(除顏色外其余都相同),其中紅球3個,白球1個.
(1)求任意摸出一球是白球的概率;
(2)甲同學先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用畫樹狀圖或列表的方法求兩次摸出都是紅球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在邊長為5的菱形ABCD中,cos∠BAD= ,點E是射線AB上的點,作EF⊥AB,交AC于點F.
(1)求菱形ABCD的面積;
(2)求證:AE=2EF;
(3)如圖2,過點F,E,B作⊙O,連結(jié)DF,若⊙O與△CDF的邊所在直線相切,求所有滿足條件的AE的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB和CD交于點O,OE⊥AB,垂足為點O,OP平分∠EOD,∠AOD=144°.
(1)求∠AOC與∠COE的度數(shù);
(2)求∠BOP的度數(shù).
【答案】(1)∠AOC=36°,∠COE=54°,(2)∠BOP=27°.
【解析】
(1)由鄰補角定義,可求得得∠AOC度數(shù),由垂直定義,可得∠AOE=∠BOE=90°,由余角定義可求得∠COE;
(2)由鄰補角定義可得∠DOE度數(shù),由OO平分∠DOE,可得∠EOP度數(shù),再由余角定義可求得∠BOP度數(shù).
(1)∵∠AOC+∠AOD=180°,∠AOD=144°,
∴∠AOC=180°-∠AOD=180°-144°=36°,
∵OE⊥AB,
∴∠AOE=∠BOE=90°,
∴∠COE=∠AOE-∠AOC=90°-36°=54°,
(2)∵∠COE+∠DOE=180°,
∴∠DOE=180°-∠COE=180°-54°=126°,
∵OO平分∠DOE,
∴∠EOP=∠DOE=×126°=63°,
∴∠BOP=∠BOE-∠EOP=90°-63°=27°.
【點睛】
本題考查了對頂角、鄰補角以及垂線的性質(zhì),是基礎(chǔ)知識要熟練掌握.
【題型】解答題
【結(jié)束】
27
【題目】如表為某市居民每月用水收費標準,(單位:元/m3).
用水量 | 單價 |
0<x≤20 | a |
剩余部分 | a+1.1 |
(1)某用戶1月用水10立方米,共交水費26元,則a= 元/m3;
(2)在(1)的條件下,若該用戶2月用水25立方米,則需交水費 元;
(3)在(1)的條件下,若該用戶水表3月份出了故障,只有70%的用水量記入水表中,該用戶3月份交了水費81.6元.請問該用戶實際用水多少立方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用22米長的籬笆和6米長的圍墻圍成一個矩形雞舍.
(1)爸爸的方案是:一面是墻,另外三面是籬笆,求爸爸圍成的雞舍面積最大是多少?
(2)小明的方案是:把有墻的一面用籬笆加長作為一邊,另外三面也是籬笆,要使圍成的雞舍面積最大,求有墻的一面應該再加長幾米長的籬笆?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年以來,我國持續(xù)大面積的霧霾天氣讓環(huán)保和健康問題成為焦點.為了調(diào)查學生對霧霾天氣知識的了解程度,某校在學生中做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個等級:A.非常了解;B.比較了解;C.基本了解;D.不了解.根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的三種統(tǒng)計圖表. 對霧霾了解程度的統(tǒng)計表:
對霧霾的了解程度 | 百分比 |
A.非常了解 | 5% |
B.比較了解 | m |
C.基本了解 | 45% |
D.不了解 | n |
請結(jié)合統(tǒng)計圖表,回答下列問題.
對霧霾天氣了解程度的條形統(tǒng)計圖
對霧霾天氣了解程度的扇形統(tǒng)計圖
(1)本次參與調(diào)查的學生共有人,m= , n=;
(2)圖2所示的扇形統(tǒng)計圖中D部分扇形所對應的圓心角是度;
(3)請補全圖1示數(shù)的條形統(tǒng)計圖;
(4)根據(jù)調(diào)查結(jié)果,學校準備開展關(guān)于霧霾知識競賽,某班要從“非常了解”態(tài)度的小明和小剛中選一人參加,現(xiàn)設計了如下游戲來確定,具體規(guī)則是:把四個完全相同的乒乓球標上數(shù)字1,2,3,4,然后放到一個不透明的袋中,一個人先從袋中隨機摸出一個球,另一人再從剩下的三個球中隨機摸出一個球.若摸出的兩個球上的數(shù)字和為奇數(shù),則小明去;否則小剛?cè)ィ堄脴錉顖D或列表法說明這個游戲規(guī)則是否公平.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,圓D與y軸相切于點C(0,4),與x軸相交于A、B兩點,且AB=6.
(1)則D點的坐標是 ( , ),圓的半徑為;
(2)sin∠ACB=;經(jīng)過C、A、B三點的拋物線的解析式;
(3)設拋物線的頂點為F,證明直線FA與圓D相切;
(4)在x軸下方的拋物線上,是否存在一點N,使△CBN面積最大,最大值是多少,并求出N點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,一段街道的兩邊緣所在直線分別為AB, PQ,并且AB∥PQ.建筑物的一端DE所在的直線MN⊥AB于點M,交PQ于點N,步行街寬MN為13.4米,建筑物寬DE為6米,光明巷寬EN為2.4米.小亮在勝利街的A處,測得此時AM為12米,求此時小亮距建筑物拐角D處有多遠?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com