【題目】問題背景(1)如圖1,△ABC中,DE∥BC分別交AB,AC于D,E兩點,過點E作EF∥AB交BC于點F.請按圖示數(shù)據(jù)填空:△EFC的面積__________,△ADE的面積______________.
探究發(fā)現(xiàn)(2)在(1)中,若BF=m,F(xiàn)C=n,DE與BC間的距離為.請證明.
拓展遷移(3)如圖2,□DEFG的四個頂點在△ABC的三邊上,若△ADG、△DBE、△GFC的面積分別為3、7、5,試利用(2)中的結(jié)論求△ABC的面積.
【答案】(1)S=6,S1=9,S2=1;(2)證明見解析;(3)27.
【解析】
試題分析:(1)四邊形DBFE是平行四邊形,利用底×高可求面積;△EFC的面積利用底×高的一半計算;△ADE的面積,可以先過點A作AH⊥BC,交DE于G,交BC于H,即AG是△ADE的高,AH是△ABC的高,利用平行線分線段成比例定理的推論,可知△ADE∽△ABC,利用相似三角形的面積比等于相似比的平方,可求AG,再利用三角形的面積公式計算即可;
(2)由于DE∥BC,EF∥AB,可知四邊形DBFE是,同時,利用平行線分線段成比例定理的推論,可知△ADE∽△ABC,△EFC∽△ABC,從而易得△ADE∽△EFC,利用相似三角形的面積比等于相似比的平方,可得S1:S2=a2:b2,由于S1=bh,那么可求S2,從而易求4S1S2,又S=ah,容易證出結(jié)論;
(3)過點G作GH∥AB交BC于H,則四邊形DBHG為平行四邊形,容易證出△DBE≌△GHF,那么△GHC的面積等于12,再利用(2)中的結(jié)論,可求DBHG的面積,從而可求△ABC的面積.
試題解析:(1)S=6,S1=9,S2=1;
(2)∵DE∥BC,EF∥AB,
∴四邊形DBFE為平行四邊形,∠AED=∠C,∠A=∠CEF,
∴△ADE∽△EFC,
∴,
∵S1=bh,
∴S2=×S1=,
∴4S1S2=4×bh×=(ah)2,
而S=ah,
∴S2=4S1S2;
(3)過點G作GH∥AB交BC于H,則四邊形DBHG為平行四邊形,
∴∠GHC=∠B,BD=HG,DG=BH,
∵四邊形DEFG為平行四邊形,
∴DG=EF,
∴BH=EF
∴BE=HF,
∴△DBE≌△GHF,
∴△GHC的面積為7+5=12,
由(2)得,平行四邊形DBHG的面積S為=12,
∴△ABC的面積為3+12+12=27.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,若a=n2﹣1,b=2n,c=n2+1,則△ABC是( 。
A.銳角三角形
B.鈍角三角形
C.等腰三角形
D.直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+2x﹣1.
(1)寫出它的頂點坐標;
(2)當x取何值時,y隨x的增大而增大;
(3)求出圖象與x軸的交點坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形ABCD內(nèi)部有若干個點,用這些點以及正方形ABCD的頂點A、B、C、D可以把原正方形分割成一些互相不重疊的三角形.
(1)填寫下表
(2)原正方形能否被分割成2016個三角形?若能,求此時正方形ABCD內(nèi)部有多少個點?若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com