【題目】如圖,以點為旋轉(zhuǎn)中心,將線段按順時針方向旋轉(zhuǎn)得到線段,連結(jié)

1)比較的大小,并說明理由.

2)當時,若,請你編制一個計算題(不標注新的字母),并解答

【答案】1,理由見解析;(2)不唯一,舉例見解析

【解析】

1)根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到,由此可以分別求出,即可求解;

2)此題屬于開放性試題,結(jié)合旋轉(zhuǎn)的性質(zhì)自行編制即可;

解:(1,理由如下;

線段繞點按順時針方向旋轉(zhuǎn)得線段

2)不唯一,舉例如下:

層次一:利用其中一個條件求簡單元素,并解答正確

如:求,

層次二:利用其中一個條件求比較復(fù)雜的元素,要利用到一些公式或三角函數(shù),并解答正確

如:①求

②求弧,弧的長

④求

層次三:利用兩個條件求復(fù)雜元素,并解答正確,如:求線段掃過的面積為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中(如圖),已知經(jīng)過點A(﹣3,0)的拋物線yax2+2ax3y軸交于點C,點B與點A關(guān)于該拋物線的對稱軸對稱,D為該拋物線的頂點.

1)直接寫出該拋物線的對稱軸以及點B的坐標、點C的坐標、點D的坐標;

2)聯(lián)結(jié)AD、DCCB,求四邊形ABCD的面積;

3)聯(lián)結(jié)AC.如果點E在該拋物線上,過點Ex軸的垂線,垂足為H,線段EH交線段AC于點F.當EF2FH時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】據(jù)交管部門統(tǒng)計,高速公路超速行駛是引發(fā)交通事故的主要原因.我縣某校數(shù)學課外小組的幾個同學想嘗試用自己所學的知識檢測車速,渝黔高速公路某路段的限速是:每小時80千米(即最高時速不超過80千米),如圖,他們將觀測點設(shè)在到公路l的距離為0.1千米的P處.這時,一輛轎車由綦江向重慶勻速直線駛來,測得此車從A處行駛到B處所用的時間為3秒(注:3秒=小時),并測得∠APO59°∠BPO45°.試計算AB并判斷此車是否超速?(精確到0.001).(參考數(shù)據(jù):sin59°≈0.8572cos59°≈0.5150,tan59°≈1.6643

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,的平分線相交于點,過點于點,交的延長線于點

1)求證:

2)當時,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形的點坐標為,點軸上,點軸上.點是邊上的動點,連接,作點關(guān)于線段的對稱點.已知一條拋物線經(jīng)過三點,且點恰好是拋物線的頂點,則的值為()

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,ACBC4,點D在邊BC上,且BD3CD,DEAB,垂足為點E,聯(lián)結(jié)CE

1)求線段AE的長;

2)求∠ACE的余切值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王老師為了解同學們對金庸武俠小說的閱讀情況,隨機對初三年級的部分同學進行調(diào)查,將調(diào)查結(jié)果分成以下五類:A:看過0~3本,B:看過4~6本,C:看過7~9本,D:看過10~12本,E:看過13~15.并根據(jù)調(diào)查結(jié)果繪制了如圖1、圖2兩幅不完整的統(tǒng)計圖.

(1)2中的a = ,D所對的圓心角度數(shù)為 °;

(2)請補全條形統(tǒng)計圖;

(3)本次調(diào)查中E類有21女,王老師想從中抽取2名同學分別撰寫一篇讀書筆記請用列表或畫樹狀圖的方法求所抽取的兩名學生恰好是一男一女的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一次函數(shù)y=k1x+8的圖像與坐標軸分別相較于點A,B與反比例y=函數(shù)的圖像相交于C,D.過點CCEy軸,垂足為E.且CE=2

1)求4k1-k2的值;

2)若CD=2AC,求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠A60°,AC2,DAB邊上一個動點(不與點A、B重合),EBC邊上一點,且∠CDE30°.設(shè)ADx,BEy,則下列圖象中,能表示yx的函數(shù)關(guān)系的圖象大致是( 。

A.B.C.D.

查看答案和解析>>

同步練習冊答案