【題目】如圖,點是等邊三角形內(nèi)一點,將繞點 .按順時針方向旋轉(zhuǎn)得, 連接.
(1)求證:是等邊三角形;
(2)當時, 試判斷的形狀,并說明理由;
(3)探究:當為多少度時,是等腰三角形.
【答案】(1)見解析;(2)是直角三角形,理由見解析;(3)當的度數(shù)為或或時,是等腰三角形.
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得到,再根據(jù)旋轉(zhuǎn)角的度數(shù)得到∠OCD的度數(shù),根據(jù)等邊三角形的判定方法,即可證明.
(2)根據(jù)旋轉(zhuǎn)前后對應(yīng)的兩個三角形全等可得△BOC≌△ADC,利用全等三角形的性質(zhì)得到∠ADC=∠BOC=,再利用△COD是等邊三角形得∠ODC=60°,于是可計算出∠ADO的度數(shù),再結(jié)合周角為360°,求出∠AOD的度數(shù),探究是否存在等腰直角三角形的情況,進而判斷△AOD的形狀;
(3)需要分三種情況討論,即①要使AO=AD,需∠AOD=∠ADO;②要使OA=OD,需∠OAD=∠ADO;③要使OD=AD,需∠OAD=∠AOD;如對于①,∠AOD=190°-,∠ADO=-60°,再結(jié)合∠AOD=∠ADO建立的方程,求出的度數(shù),同理可以計算其他兩種情況.
(1)證明:由旋轉(zhuǎn)的性質(zhì)得:,
是等邊三角形;
(2)當,即°時,
是直角三角形.理由如下:
由旋轉(zhuǎn)的性質(zhì)得:
又是等邊三角形,
即是直角三角形;
(3)分三種情況:
①時,
;
②時,
;
③時,
.
綜上所述:當的度數(shù)為或或時,是等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位認真開展學(xué)習(xí)和實踐科學(xué)發(fā)展觀活動,在階段總結(jié)中提出對本單位今后的整改措施,并在征求職工對整改方案的滿意程度時進行民主測評,測評等級為:很滿意、較滿意、滿意、不滿意四個等級.
(1)若測評后結(jié)果如扇形圖(圖①),且測試等級為很滿意、較滿意、滿意、不滿意的人數(shù)之比為2:5:4:1,則圖中a= ° ,β= °.
(2)若測試后部分統(tǒng)計結(jié)果如直方圖(圖②),請將直方圖補畫完整,并求出該單位職工總?cè)藬?shù)為 人.
(3)按上級要求,滿意度必須不少于95%方案才能通過,否則,必須對方案進行完善.若要使該方案完善后能獲得通過,至少還需增加 人對該方案的測評等級達滿意(含滿意)以上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標系中,點A、B的坐標分別是(a,0),(b,0)且+|b-2|=0.
(1)求a、b的值;
(2)在y軸上是否存在點C,使三角形ABC的面積是12?若存在,求出點C的坐標;若不存在,請說明理由.
(3)已知點P是y軸正半軸上一點,且到x軸的距離為3,若點P沿平行于x軸的負半軸方向以每秒1個單位長度平移至點Q,當運動時間t為多少秒時,四邊形ABPQ的面積S為15個平方單位?寫出此時點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】①
②
③x(x+1)-(x-1)(x+1).
④用簡便方法計算:20192-2018×2020
⑤先化簡,再求值:當x=﹣2,y=3時,求代數(shù)式(y+3x)(3x-y)-(3y-x)(3y+x)的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點(﹣1,0)和(3,0),與y軸交于點(0,﹣3)則此拋物線對此函數(shù)的表達式為( )
A.y=x2+2x+3
B.y=x2﹣2x﹣3
C.y=x2﹣2x+3
D.y=x2+2x﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠B、∠D的兩邊分別平行.
(1)在圖1中, ∠B與∠D的數(shù)量關(guān)系是 ;
(2)在圖2中, ∠B與∠D的數(shù)量關(guān)系是 ;
(3)用一句話歸納的結(jié)論為
(4)應(yīng)用:若兩個角的兩邊分別互相平行,其中一個角比另一個角的2倍小30°,求著兩個角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 ABCD 中,點 E,F 分別在 AB,CD 上,且 AE=CF.
(1)求證:四邊形 AECF 是平行四邊形;
(2)直接寫出 CE 與 AE 滿足 時, AECF是矩形;
(3)直接寫出 CE 與 AE 滿足 時, AECF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,輪船甲位于碼頭O的正西方向A處,輪船乙位于碼頭O的正北方向C處,某一時刻,AC=18km,且OA=OC.輪船甲自西向東勻速行駛,同時輪船乙沿正北方向勻速行駛,它們的速度分別為40km/h和30km/h,經(jīng)過0.2h,輪船甲行駛至B處,輪船乙行駛至D處,求此時B處距離D處多遠?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com