【題目】如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC分別交AC、AB的延長線于點E、F.
(1)求證:EF是⊙O的切線;
(2)若AC=4,CE=2,求的長度.(結(jié)果保留π)
【答案】(1)見解析;(2).
【解析】
(1)連接OD,由OA=OD知∠OAD=∠ODA,由AD平分∠EAF知∠DAE=∠DAO,據(jù)此可得∠DAE=∠ADO,繼而知OD∥AE,根據(jù)AE⊥EF即可得證;
(2)作OG⊥AE,知AG=CG=AC=2,證四邊形ODEG是矩形得OA=OB=OD=CG+CE=4,再證△ADE∽△ABD得AD2=48,據(jù)此得出BD的長及∠BAD的度數(shù),利用弧長公式可得答案.
(1)如圖,連接OD.
∵OA=OD,∴∠OAD=∠ODA.
∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE.
∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切線;
(2)如圖,作OG⊥AE于點G,連接BD,則AG=CG=AC=2,∠OGE=∠E=∠ODE=90°,∴四邊形ODEG是矩形,∴OA=OB=OD=CG+CE=2+2=4,∠DOG=90°.
∵∠DAE=∠BAD,∠AED=∠ADB=90°,∴△ADE∽△ABD,∴=,即=,∴AD2=48.在Rt△ABD中,BD==4.在Rt△ABD中,∵AB=2BD,∴∠BAD=30°,∴∠BOD=60°,則的長度為=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點A(﹣, 0),點B(2,0),與y軸交于點C(0,1),連接BC.
(1)求拋物線的解析式;
(2)N為拋物線上的一個動點,過點N作NP⊥x軸于點P,設(shè)點N的橫坐標(biāo)為t(﹣<t<2),求△ABN的面積s與t的函數(shù)解析式;
(3)若0<t<2且t≠0時,△OPN∽△COB,求點N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點分別為D、E、F,∠A=80°,點P為⊙O上任意一點(不與E、F重合),則∠EPF=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同路線行駛.乙車先到達(dá)B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離y(km)與乙車行駛時間x(h)之間的函數(shù)關(guān)系如圖所示.下列說法:①乙車的速度是120km/h;②m=160;③點H的坐標(biāo)是(7,80);④n=7.5.
其中說法正確的是( 。
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年東營市教育局在全市中小學(xué)開展了“情系疏勒書香援疆”捐書活動,200多所學(xué)校的師生踴躍參與,向新疆疏勒縣中小學(xué)共捐贈愛心圖書28.5萬余本.某學(xué)校學(xué)生社團對本校九年級學(xué)生所捐圖書進(jìn)行統(tǒng)計,根據(jù)收集的數(shù)據(jù)繪制了下面不完整的統(tǒng)計圖表.請你根據(jù)統(tǒng)計圖表中所提供的信息解答下列問題:
圖書種類 | 頻數(shù)(本) | 頻率 |
名人傳記 | 175 | a |
科普圖書 | b | 0.30 |
小說 | 110 | c |
其他 | 65 | d |
(1)求該校九年級共捐書多少本;
(2)統(tǒng)計表中的a= ,b= ,c= ,d= ;
(3)若該校共捐書1500本,請估計“科普圖書”和“小說”一共多少本;
(4)該社團3名成員各捐書1本,分別是1本“名人傳記”,1本“科普圖書”,1本“小說”,要從這3人中任選2人為受贈者寫一份自己所捐圖書的簡介,請用列表法或樹狀圖求選出的2人恰好1人捐“名人傳記”,1人捐“科普圖書”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點A、B、C、D均在小正方形的頂點上.
(1)在方格紙中畫出以AB為斜邊的等腰直角三角形ABE,點E在小正方形的頂點上;
(2)在方格紙中畫出以CD為對角線的矩形CMDN(頂點字母按逆時針順序),且面積為10,點M、N均在小正方形的頂點上;
(3)連接ME,并直接寫出EM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線m∥n,點C是直線m上一點,點D是直線n上一點,CD與直線m、n不垂直,點P為線段CD的中點.
(1)操作發(fā)現(xiàn):直線l⊥m,分別交m、n于點A、B,當(dāng)點B與點D重合時(如圖1),連結(jié)PA,請直接寫出線段PA與PB的數(shù)量關(guān)系: .
(2)猜想證明:在圖1的情況下,把直線l向右平移到如圖2的位置,試問(1)中的PA與PB
的關(guān)系式是否仍然成立?若成立,請給予證明;若不成立,請說明理由.
(3)延伸探究:在圖2的情況下,把直線l繞點A旋轉(zhuǎn),使得∠APB=90°(如圖3),若兩平行線m、n之間的距離為2k,求證:PAPB=kAB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一個轉(zhuǎn)盤分成四等份,依次標(biāo)上數(shù)字1、2、3、4,若連續(xù)自由轉(zhuǎn)動轉(zhuǎn)盤二次,指針指向的數(shù)字分別記作把作為點的橫、縱坐標(biāo).
【1】求點A(a,b)的個數(shù);
【2】求點A(a,b)在函數(shù)的圖象上的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com