【題目】把一副三角板的直角頂點(diǎn)O重疊在一起.
(1)問題發(fā)現(xiàn):如圖①,當(dāng)OB平分∠COD時,∠AOD+∠BOC的度數(shù)是 ;
(2)拓展探究:如圖②,當(dāng)OB不平分∠COD時,∠AOD+∠BOC的度數(shù)是多少?
(3)問題解決:當(dāng)∠BOC的余角的4倍等于∠AOD時,求∠BOC的度數(shù).
【答案】(1)180°;(2)180°;(3)60°.
【解析】
試題分析:(1)先根據(jù)OB平分∠COD得出∠BOC及∠AOC的度數(shù),進(jìn)而可得出結(jié)論;
(2)根據(jù)直角三角板的性質(zhì)得出∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°進(jìn)而可得出結(jié)論;
(3)根據(jù)(1)、(2)的結(jié)論可知∠AOD+∠BOC=180°,故可得出∠AOD=180°﹣∠BOC,根據(jù)∠BOC的余角的4倍等于∠AOD即可得出結(jié)論.
解:(1)∵OB平分∠COD,
∴∠BOC=∠BOD=45°.
∵∠AOC+∠BOC=45°,
∴∠AOC=45°,
∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°.
故答案為:180°;
(2)∵∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°,
∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=90°+90°=180°;
(3)∵由(1)、(2)得,∠AOD+∠BOC=180°,
∴∠AOD=180°﹣∠BOC.
∵∠AOD=4(90°﹣∠BOC),
∴180°﹣∠BOC=4(90°﹣∠BOC),
∴∠BOC=60°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“龜兔賽跑”是同學(xué)們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時間t的關(guān)系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是( )
A. 賽跑中,兔子共休息了50分鐘
B. 烏龜在這次比賽中的平均速度是0.1米/分鐘
C. 兔子比烏龜早到達(dá)終點(diǎn)10分鐘
D. 烏龜追上兔子用了20分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)如果點(diǎn)P到點(diǎn)A,點(diǎn)B的距離相等,那么x=______;
(2)當(dāng)x=______時,點(diǎn)P到點(diǎn)A,點(diǎn)B的距離之和是6;
(3)若點(diǎn)P到點(diǎn)A,點(diǎn)B的距離之和最小,則x的取值范圍是______;
(4)在數(shù)軸上,點(diǎn)M,N表示的數(shù)分別為x,x,我們把x,x之差的絕對值叫做點(diǎn)M,N之間的距離,即MN="|" x-x|.若點(diǎn)P以每秒3個單位長度的速度從點(diǎn)O沿著數(shù)軸的負(fù)方向運(yùn)動時,點(diǎn)E以每秒1個單位長度的速度從點(diǎn)A沿著數(shù)軸的負(fù)方向運(yùn)動、點(diǎn)F以每秒4個單位長度的速度從點(diǎn)B沿著數(shù)軸的負(fù)方向運(yùn)動,且三個點(diǎn)同時出發(fā),那么運(yùn)動______秒時,點(diǎn)P到點(diǎn)E,點(diǎn)F的距離相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在實施城鄉(xiāng)清潔工作過程中,某校對各個班級教室衛(wèi)生情況的考評包括以下幾項:黑板、門窗、桌椅、地面.一天,兩個班級的各項衛(wèi)生成績分別如下表:(單位:分)
黑板 | 門窗 | 桌椅 | 地面 | |
一班 | 95 | 85 | 89 | 91 |
二班 | 90 | 95 | 85 | 90 |
(1)兩個班的平均得分分別是多少?
(2)按學(xué)校的考評要求,將黑板、門窗、桌椅、地面這四項得分依次按15%、10%、35%、40%的權(quán)重計算各班的衛(wèi)生成績,那么哪個班的衛(wèi)生成績較高?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級有200名學(xué)生,為了向市團(tuán)委推薦本年級一名學(xué)生參加團(tuán)代會,按如下程序進(jìn)行了民主投票,推薦的程序如下:首先由全年級學(xué)生對六名候選人進(jìn)行投票,每名學(xué)生只能給一名候選人投票,選出票數(shù)多的前三名;然后再對這三名候選人(記為甲、乙、丙)進(jìn)行筆試和面試.兩個程序的結(jié)果統(tǒng)計如下:
測試項目 | 測試成績/分 | ||
甲 | 乙 | 丙 | |
筆試 | 92 | 90 | 95 |
面試 | 85 | 95 | 80 |
請你根據(jù)以上信息解答下列問題:
(1)請分別計算甲、乙、丙的得票數(shù);
(2)若規(guī)定每名候選人得一票記1分,將投票、筆試、面試三項得分按照2:5:3的比例計入每名候選人的總成績,成績最高的將被推薦,請通過計算說明甲、乙、丙哪名學(xué)生將被推薦.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC年,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動點(diǎn)(點(diǎn)D不與B、C重合).以AD為邊作正方形ADEF,連接CF.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上時,求證:①BD⊥CF. ②.
(2)如圖2,當(dāng)點(diǎn)D在線段BC的延長線上時,其它條件不變,請直接寫出CF、BC、CD三條線段之間的關(guān)系;
(3)如圖3,當(dāng)點(diǎn)D在線段BC的反向延長線上時,且點(diǎn)A、F分別在直線BC的兩側(cè),其它條件不變:
①請直接寫出CF、BC、CD三條線段之間的關(guān)系,
②若連接正方形對角線AE,DF,交點(diǎn)為0,連接OC,探究△AOC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市近期公布的居民用天然氣階梯價格聽證會方案如下:
第一檔天然氣用量 | 第二檔天然氣用量 | 第三檔天然氣用量 |
年用天然氣量立方米及以下,價格為每立方米元. | 年用天然氣量超出立方米,不足立方米時,超過立方米部分每立方米價格為元. | 年用天然氣量立方米以上,超過立方米部分價格為每立方米元. |
例:若某戶年使用天氣然立方米,按該方案計算,則需繳納天然氣費(fèi)為:×+×(-)=(元);依此方案請回答:
若小明家年使用天然氣立方米,則需繳納天然氣費(fèi)為_____元(直接寫出結(jié)果).
年使用天然氣立方米,則小紅家年需繳納的天然氣費(fèi)為多少元?
依此方案計算,若王先生家年實際繳納天然氣費(fèi)元,求該戶年使用天然氣多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了順利通過“國家文明城市”驗收,市政府?dāng)M對部分路段的人行道地磚、綠化帶、排水管等公用設(shè)施全面更新改造,根據(jù)市政建設(shè)的需要,需在40天內(nèi)完成工程.現(xiàn)有甲、乙兩個工程隊有意承包這項工程,經(jīng)調(diào)查知道,乙工程隊單獨(dú)完成此項工程的時間是甲工程隊單獨(dú)完成此項工程時間的2倍,若甲、乙兩工程隊合作只需10天完成.
(1)甲、乙兩個工程隊單獨(dú)完成此項工程各需多少天?
(2)若甲工程隊每天的費(fèi)用是4.5萬元,乙工程隊每天的工程費(fèi)用是2.5萬元,請你設(shè)計一種方案,既能按時完成工程,又能使工程費(fèi)用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD兩鄰邊的長m,n是關(guān)于x的方程的兩個實數(shù)根.
(1)求k的取值范圍.
(2)當(dāng)k為何值時,四邊形ABCD的兩條對角線的長相等,且都等于,求出這時四邊形ABCD的周長和面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com