【題目】 如圖,已知四邊形ABCD(網(wǎng)格中每個小正方形的邊長均為1).
(1)寫出點A,B,C,D的坐標(biāo);
(2)求四邊形ABCD的面積.
【答案】(1)A(﹣2,1),B(﹣3,﹣2),C(3,﹣2),D(1,2);(2)16.
【解析】試題分析:(1)利用平面直角坐標(biāo)系點的坐標(biāo)含義和特征可得: A(﹣2,1),
B(﹣3,﹣2),C(3,﹣2),D(1,2),(2)利用割補法求圖形面積,先在四邊形ABCD的內(nèi)部將四邊形分割成三個直角三角形和一個正方形,然后分別計算三角形和正方形的面積,再求和.
試題解析:(1)由圖象可知A(﹣2,1),B(﹣3,﹣2),C(3,﹣2),D(1,2),
(2)S四邊形ABCD=S△ABE+S△ADF+S△CDG+S正方形AEGF= ×1×3+ ×1×3+ ×2×4+3×3=16.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)的某種產(chǎn)品按質(zhì)量分為1 0個檔次.第1檔次(最低檔次)的產(chǎn)品一天能生產(chǎn)7 6件,每件利潤10元.每提高一個檔次,每件利潤增加2元,但一天產(chǎn)量減少4件.若生產(chǎn)第x檔次的產(chǎn)品一天的總利潤為1080元,求該產(chǎn)品的質(zhì)量檔次。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線AB∥CD,EF分別交AB、CD于點M、N,NP平分∠MND.
(1)如圖1,若MR平分∠EMB,則MR∥NP.請你把下面的解答過程補充完整: 解:因為AB∥CD(已知)
所以∠EMB=∠END()
因為MR平分∠EMB,NP平分∠MND(已知)
所以∠EMR= ∠EMB,∠MNP= ∠MND(角平分線定義)
所以∠EMR=∠MNP
所以MR∥NP()
(2)如圖2,若MR平分∠AMN,則MR與NP又怎樣的位置關(guān)系?請在橫線上寫出你的猜想結(jié)論:;
(3)如圖3,若MR平分∠BMN,則MR與NP又怎樣的位置關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB為銳角,點D為射線BC上一點,聯(lián)結(jié)AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①當(dāng)點D在線段BC上時(與點B不重合),如圖2,將△ABD繞A點逆時針旋轉(zhuǎn)90°,所得到的三角形為 ,線段CF、BD所在直線的位置關(guān)系為 ,線段CF、BD的數(shù)量關(guān)系為 ;
②當(dāng)點D在線段BC的延長線上時,如圖3,①中的結(jié)論是否仍然成立,并說明理由;
(2)如果AB≠AC,∠BAC是銳角,點D在線段BC上,當(dāng)∠ACB滿足什么條件時,CF⊥BC(點C、F不重合),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1.在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點B的對應(yīng)點B′.
(1)在給定方格紙中畫出平移后的△A′B′C′;畫出AB邊上的中線CD;畫出BC邊上的高線AE;
(2)△A′B′C′的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(1,0),B(0,2),點P在x軸上,且△PAB的面積為5,則點P的坐標(biāo)是( )
A.(﹣4,0)
B.(6,0)
C.(﹣4,0)或(6,0)
D.(0,12)或(0,﹣8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點P(﹣2,3)向右平移3個單位長度后的坐標(biāo)為( )
A.(3,6)
B.(1,3)
C.(1,6)
D.(6,6)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com