【題目】若點A(m,n)和點B(5,﹣7)關(guān)于x軸對稱,則m+n的值是(  )

A. 2 B. ﹣2 C. 12 D. ﹣12

【答案】C

【解析】

利用關(guān)于x軸對稱點的性質(zhì)得出m,n的值,進(jìn)而得出答案.

∵點A(m,n)和點B(5,-7)關(guān)于x軸對稱,
∴m=5,n=7,
m+n的值是:12.
故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線AM平行于射線BN,∠B=90°,AB=4,C是射線BN上的一個動點,連接AC,作CDAC,且AC=2CD,過CCEBNAD于點E,設(shè)BC長為a

(1)求△ACD的面積(用含a的代數(shù)式表示);

(2)求點D到射線BN的距離(用含有a的代數(shù)式表示);

(3)是否存在點C,使△ACE是以AE為腰的等腰三角形?若存在,請求出此時a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個頂點B(1, 0)、C(3, 0)、D(3, 4).以A為頂點的拋物線y=ax2+bx+c過點C.動點P從點A出發(fā),以每秒個單位的速度沿線段AD向點D運(yùn)動,運(yùn)動時間為t秒.過點P作PE⊥x軸交拋物線于點M,交AC于點N.

(1)直接寫出點A的坐標(biāo),并求出拋物線的解析式;

(2)當(dāng)t為何值時,△ACM的面積最大?最大值為多少?

(3)點Q從點C出發(fā),以每秒1個單位的速度沿線段CD向點D運(yùn)動,當(dāng)t為何值時,在線段PE上存在點H,使以C、Q、N、H為頂點的四邊形為菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從邊長為a的大正方形紙板中挖去一個邊長為b的小正方形紙板后,將其裁成四個相同的等腰梯形(如圖甲),然后拼成一個平行四邊形(如圖乙).那么通過計算兩個圖形陰影部分的面積,可以驗證成立的公式為(
A.a2﹣b2=(a﹣b)2
B.(a+b)2=a2+2ab+b2
C.(a﹣b)2=a2﹣2ab+b2
D.a2﹣b2=(a+b)(a﹣b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點P1m,m)在第一象限,則(m1x1m的解集為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列等式從左到右的變形,屬于因式分解的是( 。

A.8x2 y32x24 y3B. x+1)( x1)=x21

C.3x3y13 xy)﹣1D.x28x+16=( x42

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小強(qiáng)在河的一邊,要測河面的一只船B與對岸碼頭A的距離,他的做法如下:

①在岸邊確定一點C,使C與A,B在同一直線上;
②在AC的垂直方向畫線段CD,取其中點O;
③畫DF⊥CD使F、O、A在同一直線上;
④在線段DF上找一點E,使E與O、B共線.
他說測出線段EF的長就是船B與碼頭A的距離.他這樣做有道理嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算正確的是( 。

A. a2a3=a5 B. a2+a3=a5 C. (ab23=ab6 D. a10÷a2=a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】4的算術(shù)平方根是

查看答案和解析>>

同步練習(xí)冊答案