【題目】若對任意的實數(shù)a,函數(shù)f(x)=(x﹣1)lnx﹣ax+a+b有兩個不同的零點,則實數(shù)b的取值范圍是( )
A.(﹣∞,﹣1]
B.(﹣∞,0)
C.(0,1)
D.(0,+∞)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店嘗試用單價隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10元/件的商品售后,經(jīng)過統(tǒng)計得到此商品單價在第x天(x為正整數(shù))銷售的相關(guān)信息,如表所示:
銷售量n(件) | n=50﹣x |
銷售單價m(元/件) | 當(dāng)1≤x≤20時, |
當(dāng)21≤x≤30時, |
(1)請計算第15天該商品單價為多少元/件?
(2)求網(wǎng)店銷售該商品30天里所獲利潤y(元)關(guān)于x(天)的函數(shù)關(guān)系式;
(3)這30天中第幾天獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,AD∥BC,AD=AB=DC= BC=1,E是PC的中點,面PAC⊥面ABCD.
(Ⅰ)證明:ED∥面PAB;
(Ⅱ)若PC=2,PA= ,求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】醫(yī)學(xué)上某種還沒有完全攻克的疾病,治療時需要通過藥物控制其中的兩項指標(biāo)H和V.現(xiàn)有..三種不同配方的藥劑,根據(jù)分析,A,B,C三種藥劑能控制H指標(biāo)的概率分別為0.5,0.6,0.75,能控制V指標(biāo)的概率分別是0.6,0.5,0.4,能否控制H指標(biāo)與能否控制V指標(biāo)之間相互沒有影響. (Ⅰ)求A,B,C三種藥劑中恰有一種能控制H指標(biāo)的概率;
(Ⅱ)某種藥劑能使兩項指標(biāo)H和V都得到控制就說該藥劑有治療效果.求三種藥劑中有治療效果的藥劑種數(shù)X的分布列.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知斜三棱柱ABC﹣A1B1C1 的側(cè)面 A1ACC1與底面ABC垂直,∠ABC=90°,BC=2,AC=2 ,且AA1⊥A1C,AA1=A1C.
(1)求側(cè)棱A1A與底面ABC所成角的大;
(2)求側(cè)面A1ABB1與底面ABC所成二面角的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣1)2+y2= ,一動圓與直線x=﹣ 相切且與圓C外切. (Ⅰ)求動圓圓心P的軌跡T的方程;
(Ⅱ)若經(jīng)過定點Q(6,0)的直線l與曲線T相交于A、B兩點,M是線段AB的中點,過M作x軸的平行線與曲線T相交于點N,試問是否存在直線l,使得NA⊥NB,若存在,求出直線l的方程,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐S﹣ABCD中,底面ABCD為矩形,SD⊥底面ABCD,AD= ,DC=SD=2,點M在側(cè)棱SC上,∠ABM=60°.
(Ⅰ)證明:M是側(cè)棱SC的中點;
(Ⅱ)求二面角S﹣AM﹣B的余弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程為ρ﹣4cosθ+3ρsin2θ=0,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l過點M(1,0),傾斜角為 . (Ⅰ)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(Ⅱ)若曲線C經(jīng)過伸縮變換 后得到曲線C′,且直線l與曲線C′交于A,B兩點,求|MA|+|MB|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程x2﹣2x+kb+1=0有兩個不相等的實數(shù)根,則一次函數(shù)y=kx+b的大致圖象可能是( 。
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com