【題目】如圖,已知菱形ABCD的面積為8,對(duì)角線AC長為4MBC的中點(diǎn),若P為對(duì)角線AC上一動(dòng)點(diǎn),則PBPM之和的最小值為( 。

A. B. 2C. 2D. 4

【答案】B

【解析】

作點(diǎn)B關(guān)于對(duì)角線AC的對(duì)稱點(diǎn),該對(duì)稱點(diǎn)與D重合連接DMPBPM之和的最小值為DM的長;求出BD=4,∠ABC=120°,即可確定,BCD是等邊三角形,在RtCDM中,CM=2CD=4,求得DM=2.

作點(diǎn)B關(guān)于對(duì)角線AC的對(duì)稱點(diǎn),該對(duì)稱點(diǎn)與D重合,

連接DMPBPM之和的最小值為DM的長;

∵菱形ABCD的面積為8,對(duì)角線AC長為4

BD4,

RtABO中,AO2BO2,

AB4,

∴∠OAB30°,

∴∠ABC120°

∴△BCD是等邊三角形,

DBC的中點(diǎn),

DMBC,

RtCDM中,CM2,CD4

DM2,

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線yax24axx軸正半軸于點(diǎn)A5,0),交y軸于點(diǎn)B

1)求拋物線的解析式;

2)如圖1,點(diǎn)P為第一象限內(nèi)拋物線上一點(diǎn),連接AP,將射線AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,與過點(diǎn)P且垂直于AP的直線交于點(diǎn)C,設(shè)點(diǎn)P橫坐標(biāo)為t,點(diǎn)C的橫坐標(biāo)為m,求mt之間的函數(shù)關(guān)系式(不要求寫出t的取值范圍);

3)如圖2,在(2)的條件下,過點(diǎn)C作直線交x軸于點(diǎn)D,在x軸上取點(diǎn)F,連接FP,點(diǎn)EAC的中點(diǎn),連接ED,若F的橫坐標(biāo)為-,∠AFP=∠CDE,且∠FAP+ACD180°,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400已知乙種商品每件進(jìn)價(jià)比甲種商品每件進(jìn)價(jià)多8元,且購進(jìn)的甲、乙兩種商品件數(shù)相同.

求甲、乙兩種商品的每件進(jìn)價(jià);

該商場將購進(jìn)的甲、乙兩種商品進(jìn)行銷售,甲種商品的銷售單價(jià)為60元,乙種商品的銷售單價(jià)為88元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價(jià)的七折銷售;乙種商品銷售單價(jià)保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價(jià)至少銷售多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景點(diǎn)的門票價(jià)格如表

購票人數(shù)/

140

4180

80以上

每人門票價(jià)/

10

8

6

某校九年級(jí)(1)、(2)兩班計(jì)劃去春游該景點(diǎn),其中(1)班人數(shù)少于40人,(2)班人數(shù)多于40人且少于80人,如果兩班都以班為單位單獨(dú)購票,則一共支付838元:如果兩班聯(lián)合起來作為一個(gè)團(tuán)體購票,則只需花費(fèi)570

1)兩個(gè)班各有多少名學(xué)生;

2)團(tuán)體購票與單獨(dú)購票相比較,兩個(gè)班各節(jié)約了多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,點(diǎn)C⊙O上,過點(diǎn)C的直線與AB的延長線交于點(diǎn)P,AC=PC∠COB=2∠PCB.

1)求證:PC⊙O的切線;

2)求證:BC=AB

3)點(diǎn)M是弧AB的中點(diǎn),CMAB于點(diǎn)N,若AB=4,求MNMC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】天水某公交公司將淘汰某一條線路上冒黑煙較嚴(yán)重的公交車,計(jì)劃購買A型和B型兩行環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,

1)求購買A型和B型公交車每輛各需多少萬元?

2)預(yù)計(jì)在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費(fèi)用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費(fèi)用最少?最少總費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個(gè)不透明的盒子,甲盒中裝有編號(hào)為1,2,3三個(gè)球,乙盒中裝有編號(hào)為4,5,6三個(gè)球,每個(gè)盒子中的球除編號(hào)外其它完全相同,將盒子中的球搖均后,從每個(gè)盒子中隨機(jī)各取一個(gè)球.

1)從甲盒中取出的球號(hào)數(shù)是3的概率是  ;

2)請(qǐng)用列表法或畫樹狀圖法,求從兩個(gè)盒子中取出的球號(hào)數(shù)都是偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,⊙ORtACD的兩直角邊分別交于點(diǎn)E、F,點(diǎn)F是弧BE的中點(diǎn),∠C=90°,連接AF

1)求證:直線DF是⊙O的切線.

2)若BD=1OB=2,求tanAFC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某款籃球架的示意圖,已知底座BC0.60米,底座BC與支架AC所成的角∠ACB75°,支架AF的長為2.50米,籃板頂端F點(diǎn)到籃框D的距離FD1.35米,籃板底部支架HE與支架AF所成的角∠FHE60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.26sin75°≈0.97,tan75°≈3.73,1.73)( 。

A. 3.04B. 3.05C. 3.06D. 4.40

查看答案和解析>>

同步練習(xí)冊(cè)答案