【題目】課本拓展

舊知新意:

我們?nèi)菀鬃C明,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.那么,三角形的一個內(nèi)角與它不相鄰的兩個外角的和之間存在怎樣的數(shù)量關(guān)系呢?

嘗試探究

1)如圖1,∠DBC與∠ECB分別為△ABC的兩個外角,試探究∠A與∠DBC+ECB之間存在怎樣的數(shù)量關(guān)系?為什么?

初步應(yīng)用:

2)如圖2,在△ABC紙片中剪去△CED,得到四邊形ABDE,∠1=130°,則∠2-C=______;

3)小明聯(lián)想到了曾經(jīng)解決的一個問題:如圖3,在△ABC中,BP、CP分別平分外角∠DBC、∠ECB,∠P與∠A有何數(shù)量關(guān)系?請利用上面的結(jié)論直接寫出答案______

3拓展提升:

4)如圖4,在四邊形ABCD中,BP、CP分別平分外角∠EBC、∠FCB,∠P與∠A、∠D有何數(shù)量關(guān)系?為什么?(若需要利用上面的結(jié)論說明,可直接使用,不需要說明理由)

【答案】1)∠DBC+ECB =180°+A,理由見解析;(250°;(3)∠P=90°-A;(4)∠BAD+CDA =360°-2P,理由見解析

【解析】

1)根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和表示出∠DBC+ECB,再利用三角形內(nèi)角和定理整理即可得解;

2)根據(jù)(1)的結(jié)論整理計算即可得解;

3)表示出∠DBC+ECB,再根據(jù)角平分線的定義求出∠PBC+PCB,然后利用三角形內(nèi)角和定理列式整理即可得解;

4)延長BACD相交于點Q,先用∠Q表示出∠P,再用(1)的結(jié)論整理即可得解.

1)∠DBC+ECB=180°-ABC+180°-ACB

=360°-(∠ABC+ACB

=360°-180°-A

=180°+A;

2)∵∠1+2=180°+C

130°+2=180°+C,

∴∠2-C=50°

3)∠DBC+ECB=180°+A,

BPCP分別平分外角∠DBC、∠ECB,

∴∠PBC+PCB=(∠DBC+ECB=180°+A),

PBC中,∠P=180°-180°+A=90°-A

即∠P=90°-A;

故答案為:50°,∠P=90°-A;

4)延長BACDQ,

則∠P=90°- Q

∴∠Q=180°-2P,

∴∠BAD+CDA=180°+Q,

=180°+180°-2P

=360°-2P

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖直角坐標(biāo)系中直線 AB x 軸正半軸、y 軸正半軸交于 A,B 兩點,已知 B(0,4),∠BAO=30°,P,Q 分別是線段 OBAB 上的兩個動點,P O 出發(fā)以每秒 3 個單位長度的速度向終點 B 運動,Q B 出發(fā)以每秒 8 個單位長度的速度向終點 A 運動,兩點同時出發(fā),當(dāng)其中一點到達(dá)終點時整個運動結(jié)束,設(shè)運動時間為 t(秒).

(1)求線段 AB 的長,及點 A 的坐標(biāo);

(2)t 為何值時,△BPQ 的面積為

(3) C OA 的中點,連接 QC,QP,以 QC,QP 為鄰邊作平行四邊形 PQCD

t 為何值時,點 D 恰好落在坐標(biāo)軸上;

②是否存在時間 t 使 x 軸恰好將平行四邊形 PQCD 的面積分成 13 的兩部分,若存在,直接寫出 t 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,已知∠BAC=450,ADBC于點D,BD=2DC=3,求AD的長。某同學(xué)靈活運用軸對稱知識,將圖形進(jìn)行翻折變換,巧妙地解答了此題。請按照這位同學(xué)的思路,探究并解答下列問題:

1)分別以ABAC為對稱軸,作出ABD,ACD的軸對稱圖形,點D的對稱點分別為E,F,延長EB,FC交于點G,證明四邊形AEGF是正方形;

2)設(shè)AD=x,建立關(guān)于x的方程模型,求出AD的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABO的直徑ADO相切于點A,DEO相切于點E,CDE延長線上一點CE=CB

(1)求證BCO的切線;

(2)AB=4,AD=1,求線段CE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,點邊上一點且,點是線段上一動點,連接,以為斜邊在的下方作等腰,當(dāng)從點出發(fā)運動至點停止時,點的運動路徑長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABEF,則∠A、C、D、E滿足的數(shù)量關(guān)系是(

A. ACDE=360°

B. ADCE

C. ACDE=180°

D. ECDA=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了開設(shè)武術(shù)、舞蹈、剪紙等三項活動課程以提升學(xué)生的體藝素養(yǎng),隨機抽取了部分學(xué)生對這三項活動的興趣情況進(jìn)行了調(diào)查(每人從中只能選一項),并將調(diào)查結(jié)果繪制成如圖兩幅統(tǒng)計圖,請你結(jié)合圖中信息解答問題.

1)將條形統(tǒng)計圖補充完整;

2)本次抽樣調(diào)查的樣本容量是

3)已知該校有1200名學(xué)生,請你根據(jù)樣本估計全校學(xué)生中喜歡剪紙的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

如圖1,點是直線上一點,上方的四邊形中,,延長,探究的數(shù)量關(guān)系,并證明.

小白的想法是:“作(如圖2),通過推理可以得到,從而得出結(jié)論”.

請按照小白的想法完成解答:

拓展延伸:

保留原題條件不變,平分,反向延長,交的平分線于點(如圖3),設(shè),請直接寫出的度數(shù)(用含的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三角形ABC中,已知ACBC,CDAB,∠1=2.對于下列五個結(jié)論:

DEAC

②∠1=B;

③∠3=A;

④∠3=EDB;

⑤∠2與∠3互補.

其中正確的有( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

同步練習(xí)冊答案