【題目】請先仔細閱讀下列要求,然后解答相關問題.
(1)請補全以下求一元二次不等式-2x2-4x≥0的解集的過程;
①構造函數(shù),畫出圖象:根據(jù)不等式特征構造二次函數(shù)y=-2x2-4x;并在平面直角坐標系中(如圖)畫出二次函數(shù)y=-2x2-4x的圖象(只畫出草圖即可);
②求得界點,標示所需:當y=0時,求得方程-2x2-4x=0的解為 ;不等式-2x2-4x≥0的解集即為函數(shù)值y≥0時所對應的自變量x的取值范圍;
③借助圖象,寫出解集;由所標示圖象,可得不等式-2x2-4x≥0的解集為 ;
(2)請你利用(1)中求不等式解集的方法和步驟,①直接寫出一元二次不等式x2-6x+3<10的解集為 ;
②直接寫出一元二次不等式x2+3x>-1的解集為 .
解:如圖所示.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑為1,A,P,B,C是⊙O上的四個點. ∠APC=∠CPB=60°.
(1)試探究線段PA,PB,PC之間的數(shù)量關系,并證明你的結論;
(2)當點P位于什么位置時,四邊形APBC的面積最大?求出最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.
(1)求拋物線的解析式;
(2)是否存在這樣的P點,使線段PC的長有最大值,若存在,求出這個最大值;若不存在,請說明理由;
(3)求PAC為直角三角形時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個三角形的兩邊長分別為3和6,第三邊的邊長是方程(x﹣2)(x﹣4)=0的根,則這個三角形的周長是( )
A. 11 B. 11或13 C. 13 D. 以上選項都不正確
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com