【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,E為AC邊的中點,過點A作AD⊥AB交BE的延長線于點D,CG平分∠ACB交BD于點G,F(xiàn)為AB邊上一點,連接CF,且∠ACF=∠CBG.求證:
(1)AF=CG;
(2)CF=2DE.
【答案】
(1)證明:∵∠ACB=90°,CG平分∠ACB,
∴∠ACG=∠BCG=45°,
又∵∠ACB=90°,AC=BC,
∴∠CAF=∠CBF=45°,
∴∠CAF=∠BCG,
在△AFC與△CGB中,
,
∴△AFC≌△CBG(ASA),
∴AF=CG;
(2)證明:延長CG交AB于H,
∵CG平分∠ACB,AC=BC,
∴CH⊥AB,CH平分AB,
∵AD⊥AB,
∴AD∥CG,
∴∠D=∠EGC,
在△ADE與△CGE中,
,
∴△ADE≌△CGE(AAS),
∴DE=GE,
即DG=2DE,
∵AD∥CG,CH平分AB,
∴DG=BG,
∵△AFC≌△CBG,
∴CF=BG,
∴CF=2DE.
【解析】(1)要證AF=CG,只需證明△AFC≌△CBG即可.(2)延長CG交AB于H,則CH⊥AB,H平分AB,繼而證得CH∥AD,得出DG=BG和△ADE與△CGE全等,從而證得CF=2DE.
【考點精析】解答此題的關鍵在于理解等腰直角三角形的相關知識,掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°.
科目:初中數學 來源: 題型:
【題目】谷歌人工智能AlphaGo機器人與李世石的圍棋挑戰(zhàn)賽引起人們的廣泛關注,人工智能完勝李世石.某教學網站開設了有關人工智能的課程并策劃了A,B兩種網上學習的月收費方式:
收費 方式 | 月使用費(元) | 包時上網 時間(h) | 超時費(元/min) |
A | 7 | 25 | 0.6 |
B | 10 | 50 | 0.8 |
設小明每月上網學習人工智能課程的時間為x小時,方案A,B的收費金額分別為yA元,yB元.
(1)當x≥50時,分別求出yA,yB與x之間的函數關系式;
(2)若小明3月份上該網站學習的時間為60小時,則他選擇哪種方式上網學習合算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2,則tan∠MCN=( )
A.
B.
C.
D. ﹣2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣1,4),C(﹣3,2).
(1)畫出△ABC關于y軸對稱的圖形△A1B1C1 , 并直接寫出C1點坐標;
(2)以原點O為位似中心,位似比為1:2,在y軸的左側,畫出△ABC放大后的圖形△A2B2C2 , 并直接寫出C2點坐標;
(3)如果點D(a,b)在線段AB上,請直接寫出經過(2)的變化后點D的對應點D2的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直角坐標系中,△ABC的頂點都在網格點上,其中,C點坐標為(1,2).
(1)寫出點A、B的坐標:
(2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′,則A′B′C′的三個頂點坐標分別是A′(,)、B′(,)、C′(,).
(3)△ABC的面積為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明早晨跑步,他從自家向東跑了2千米到達小彬家,繼續(xù)向東跑了1.5千米到達小紅家,然后向西跑了4.5千米到達中心廣場,最后回到家.
(1)以小明家為原點,以向東的方向為正方向,用1 個單位長度表示1千米,你能在數軸上表示出中心廣場,小彬家和小紅家的位置嗎?
(2)小彬家距中心廣場多遠?
(3)小明一共跑了多少千米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線經過點A(2,0)和B(t,0)(t≥2),與y軸交于點C,直線l:y=x+2t經過點C,交x軸于點D,直線AE交拋物線于點E,且有∠CAE=∠CDO,作CF⊥AE于點F.
(1)求∠CDO的度數;
(2)求出點F坐標的表達式(用含t的代數式表示);
(3)當S△COD﹣S四邊形COAF=7時,求拋物線解析式;
(4)當以B,C,O三點為頂點的三角形與△CEF相似時,請直接寫出t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲地與丙地由公路連接,乙地在甲、丙兩地之間,一輛汽車在下午1點鐘從離甲地10千米的M地出發(fā)向乙地勻速前進,15分鐘后離甲地20千米,當汽車行駛到離甲地150千米的乙地時,接到通知要在下午5點前趕到離乙地30千米的丙地.汽車若按原速能否按時到達?若能,是在幾點幾時到達;若不能,車速應提高到多少才能按時到達?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com