如圖,請?jiān)谙铝兴膫(gè)關(guān)系中,選出兩個(gè)恰當(dāng)?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)
關(guān)系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四邊形ABCD中,__________,__________;
求證:四邊形ABCD是平行四邊形.
解:已知:①③,①④,②④,③④均可,其余均不可以.
解法一:
已知:在四邊形ABCD中,①AD∥BC,③∠A=∠C,
求證:四邊形ABCD是平行四邊形.
證明:∵AD∥BC,
∴∠A+∠B=180°,∠C+∠D=180°.
∵∠A=∠C,
∴∠B=∠D.
∴四邊形ABCD是平行四邊形.
解法二:
已知:在四邊形ABCD中,①AD∥BC,④∠B+∠C=180°,
求證:四邊形ABCD是平行四邊形.
證明:∵∠B+∠C=180°,
∴AB∥CD,
又∵AD∥BC,
∴四邊形ABCD是平行四邊形;
解法三:
已知:在四邊形ABCD中,②AB=CD,④∠B+∠C=180°,
求證:四邊形ABCD是平行四邊形.
證明:∵∠B+∠C=180°,
∴AB∥CD,
又∵AB=CD,
∴四邊形ABCD是平行四邊形;
解法四:
已知:在四邊形ABCD中,③∠A=∠C,④∠B+∠C=180°,
求證:四邊形ABCD是平行四邊形.
證明:∵∠B+∠C=180°,
∴AB∥CD,
∴∠A+∠D=180°,
又∵∠A=∠C,
∴∠B=∠D,
∴四邊形ABCD是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,折疊矩形紙片ABCD,使點(diǎn)B落在邊AD上,折痕EF的兩端分別在AB、BC上(含端點(diǎn)),且AB=6cm,BC=10cm.則折痕EF的最大值是__________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某種商品上市之初采用了大量的廣告宣傳,其銷售量與上市的天數(shù)之間成正比,當(dāng)廣告停止后,銷售量與上市的天數(shù)之間成反比(如圖),現(xiàn)己知上市30天時(shí),當(dāng)日銷售量為120萬件.
(1)寫出該商品上市以后銷售量y(萬件)與時(shí)間x(天數(shù))之間的表達(dá)式;
(2)求上市至第100天(含第100天),日銷售量在36萬件以下(不含36萬件)的天數(shù);
(3)廣告合同約定,當(dāng)銷售量不低于100萬件,并且持續(xù)天數(shù)不少于12天時(shí),廣告設(shè)計(jì)師就可以拿到“特殊貢獻(xiàn)獎(jiǎng)”,那么本次廣告策劃,設(shè)計(jì)師能否拿到“特殊貢獻(xiàn)獎(jiǎng)”?(說明:天數(shù)可以為小數(shù),如3.14天等)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖所示,P1(x1,y1)、P2(x2,y2),…,Pn(xn,yn)在函數(shù)y=(x>0)的圖象上,△OP1A1,△P2A1A2,△P3A2A3,…,△PnAn﹣1An…都是等腰直角三角形,斜邊OA1,A1A2,…,An﹣1An,都在x軸上,則y1+y2=__________,y1+y2+…+yn=__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com