【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關(guān)系可以近似地看作一次函數(shù)(利潤=售價﹣制造成本).
(1)寫出每月的利潤w(萬元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價為多少元時,廠商每月能獲得350萬元的利潤?
(3)當(dāng)銷售單價為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?
【答案】(1)w= -2x2+136x-1800;(2)銷售單價定為25 元或43 元,廠商每月能獲得350萬元的利潤;(3)當(dāng)銷售單價為34 元時,每月能獲得最大利潤,最大利潤是512 萬元.
【解析】
(1)根據(jù)每月的利潤z=(x-18)y,再把y=-2x+100代入即可求出z與x之間的函數(shù)解析式,
(2)把z=350代入z=-2x2+136x-1800,解這個方程即可;
(3)把函數(shù)關(guān)系式變形為頂點(diǎn)式運(yùn)用二次函數(shù)的性質(zhì)求出最值.
(1)w= (x -18 )y= (x -18 )(-2x+100 )= -2x2+136x-1800 ,
∴w 與x 之間的函數(shù)解析式為w= -2x2+136x-1800 .
(2)由w=350 ,得350= -2x2+136x -1800 ,
解得x1=25 ,x2=43
所以,銷售單價定為25 元或43 元,廠商每月能獲得350萬元的利潤.
(3)將w =-2x2+136x-1800 配方,得w= -2(x-34 )2+512 ,
∵a=﹣2<0,∴函數(shù)有最大值
∴當(dāng)x=34時,w最大值為512
因此,當(dāng)銷售單價為34 元時,每月能獲得最大利潤,最大利潤是512 萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉辦了一次趣味數(shù)學(xué)競賽,滿分分,學(xué)生得分均為整數(shù),成績達(dá)到分及以上為合格,達(dá)到分及以上為優(yōu)秀這次競賽中,甲、乙兩組學(xué)生成績?nèi)缦?/span>(單位:分).
甲組:,,,,,,,,,
乙組:,,,,,,,,,
(1)
組別 | 平均分 | 中位數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
甲組 | 68分 | a | 376 | 90% | 30% |
乙組 | b | c | 196 | 80% | 20% |
以上成績統(tǒng)計分析表中________分,_________分,________分;
(2)小亮同學(xué)說:這次競賽我得了分,在我們小組中排名屬中游略偏上!觀察上面表格判斷,小亮可能是甲、乙哪個組的學(xué)生?并說明理由.
(3)如果你是該校數(shù)學(xué)競賽的教練員,現(xiàn)在需要你選擇一組同學(xué)代表學(xué)校參加復(fù)賽,你會選擇哪一組?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,點(diǎn)A在反比例函數(shù)y=(k≠0)的圖象上,點(diǎn)D在y軸上,點(diǎn)B、點(diǎn)C在x軸上.若平行四邊形ABCD的面積為10,則k的值是( 。
A. ﹣10 B. ﹣5 C. 5 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA,PB是⊙O的切線,A,B是切點(diǎn),點(diǎn)C是⊙O上異于A、B的一點(diǎn),若∠P=40°,則∠ACB的度數(shù)為_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形一個角的平分線分矩形一邊為2cm和3cm兩部分,則這個矩形的面積為( )
A.10cm2B.15cm2C.12cm2D.10cm2或15cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在y軸上,邊AC與x軸交于點(diǎn)D,AE平分∠BAC交邊BC于點(diǎn)E,經(jīng)過點(diǎn)A、D、E的圓的圓心F恰好在y軸上,⊙F與y軸相交于另一點(diǎn)G.
(1)求證:BC是⊙F的切線;
(2)若點(diǎn)A、D的坐標(biāo)分別為A(0,﹣1),D(2,0),求⊙F的半徑;
(3)試探究線段AG、AD、CD三者之間滿足的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,半徑OA與弦BD垂直,點(diǎn)C在⊙O上,∠AOB=80°
(1)若點(diǎn)C在優(yōu)弧BD上,求∠ACD的大;
(2)若點(diǎn)C在劣弧BD上,直接寫出∠ACD的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx+n經(jīng)過點(diǎn)A(3,0)、
B(0,-3),點(diǎn)P是直線AB上的動點(diǎn),過點(diǎn)P作x軸的垂線交拋物線于點(diǎn)M,設(shè)點(diǎn)P的橫
坐標(biāo)為t.
(1)分別求出直線AB和這條拋物線的解析式.
(2)若點(diǎn)P在第四象限,連接AM、BM,當(dāng)線段PM最長時,求△ABM的面積.
(3)是否存在這樣的點(diǎn)P,使得以點(diǎn)P、M、B、O為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)P的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,點(diǎn)在邊上,以為折痕,將向上翻折,點(diǎn)正好落在邊上的點(diǎn)處,若的周長為8,的周長為18,則的長為( )
A.5B.8C.7D.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com