【題目】如圖,等邊△ABC中,AD是∠BAC的角平分線,E為AD上一點(diǎn),以BE為一邊且在BE下方作等邊△BEF,連接CF.
(1)求證:AE=CF;
(2)求∠ACF的度數(shù).
【答案】(1)證明見解析;(2)∠ACF=90°.
【解析】
(1)根據(jù)△ABC是等邊三角形,得出AB=BC,∠ABE+∠EBC=60°,再根據(jù)△BEF是等邊三角形,得出EB=BF,∠CBF+∠EBC=60°,從而求出∠ABE=∠CBF,最后根據(jù)SAS證出△ABE≌△CBF,即可得出AE=CF;
(2)根據(jù)△ABC是等邊三角形,AD是∠BAC的角平分線,得出∠BAE=30°,∠ACB=60°,再根據(jù)△ABE≌△CBF,得出∠BCF=∠BAE=30°,從而求出∠ACF的度數(shù).
(1)證明:∵△ABC是等邊三角形,
∴AB=BC,∠ABE+∠EBC=60 °.
∵△BEF是等邊三角形,
∴EB=BF,∠CBF+∠EBC=60 °.
∴∠ABE=∠CBF.
在△ABE和△CBF中, ,
∴△ABE≌△CBF(SAS).
∴AE=CF;
(2)∵等邊△ABC中,AD是∠BAC的角平分線,
∴∠BAE=∠BAC=30 °,∠ACB=60°.
∵△ABE≌△CBF,
∴∠BCF=∠BAE=30 °.
∴∠ACF=∠BCF+∠ACB=30 °+60 °=90 °.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,一次函數(shù)y=kx﹣2k和二次函數(shù)y=﹣kx2+2x﹣4(k是常數(shù)且k≠0)的圖象可能是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD為正方形,點(diǎn)E為線段AC上一點(diǎn),連接DE,過點(diǎn)E作EF⊥DE,交射線BC于點(diǎn)F,以DE、EF為鄰邊作矩形DEFG,連接CG.
(1)如圖1,求證:矩形DEFG是正方形;
(2)若AB=2,CE=,求CG的長度;
(3)當(dāng)線段DE與正方形ABCD的某條邊的夾角是30°時(shí),直接寫出∠EFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線相交于點(diǎn)D,DE⊥AB交AB的延長線于點(diǎn)E,DF⊥AC于點(diǎn)F,現(xiàn)有下列結(jié)論:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正確的有( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在平面直角坐標(biāo)系中,已知的三個(gè)頂點(diǎn)的坐標(biāo)分別為,,.
(1)將向上平移個(gè)單位長度,再向左平移個(gè)單位長度,得到,請(qǐng)畫出(點(diǎn),,的對(duì)應(yīng)點(diǎn)分別為,,)
(2)請(qǐng)畫出與關(guān)于軸對(duì)稱的(點(diǎn),,的對(duì)應(yīng)點(diǎn)分別為,,)
(3)請(qǐng)寫出,的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,過點(diǎn)B的直線MN∥AC,D為BC邊上一點(diǎn),連接AD,作DE⊥AD交MN于點(diǎn)E,連接AE.
(1)如圖①,當(dāng)∠ABC=45°時(shí),求證:AD=DE;理由;
(2)如圖②,當(dāng)∠ABC=30°時(shí),線段AD與DE有何數(shù)量關(guān)系?并請(qǐng)說明理由;
(3)當(dāng)∠ABC=α時(shí),請(qǐng)直接寫出線段AD與DE的數(shù)量關(guān)系.(用含α的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)(4<OA<8),以O(shè)為圓心,OA的長為半徑的圓交邊CD于點(diǎn)M,連接OM,過點(diǎn)M作⊙O的切線交邊BC于N.
(1)圖中是否存在與△ODM相似的三角形,若存在,請(qǐng)找出并給予證明;
(2)設(shè)DM=x,OA=R,求R關(guān)于x的函數(shù)關(guān)系式;
(3)在動(dòng)點(diǎn)O逐漸向點(diǎn)D運(yùn)動(dòng)(OA逐漸增大)的過程中,△CMN的周長如何變化?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)的圖象與反比例函數(shù)在第一象限的圖象交于點(diǎn),過點(diǎn)作軸的垂線,垂足為,已知的面積為.
求反比例函數(shù)的解析式;
如圖,點(diǎn)為反比例函數(shù)在第三象限圖象上的點(diǎn),過點(diǎn)作軸的垂線,垂足為,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架云梯AB長25分米,斜靠在一面墻上,梯子底端B離墻7分米.
(1)這個(gè)梯子的頂端A距地面有多高?
(2)如果梯子頂端下滑了4分米,那么梯子的底端在水平方向滑動(dòng)了多少分米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com