【題目】已知甲同學手中藏有三張分別標有數(shù)字 、 、1的卡片,乙同學手中藏有三張分別標有數(shù)字1、3、2的卡片,卡片外形相同.現(xiàn)從甲乙兩人手中各任取一張卡片,并將它們的數(shù)字分別記為a,b.
(1)請你用樹形圖或列表法列出所有可能的結(jié)果;
(2)現(xiàn)制定一個游戲規(guī)則:若所選出的a,b能使得ax2+bx+1=0有兩個不相等的實數(shù)根,則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則公平嗎?請用概率知識解釋.
【答案】
(1)解:畫樹狀圖如下:
由圖可知,共有9種等可能的結(jié)果;
(2)解:∵(a,b)的可能結(jié)果有( ,1)、( ,3)、( ,2)、( ,1)、( ,3)、( ,2)、(1,1)、(1,3)及(1,2),
∴當a= ,b=1時,△=b2﹣4ac=﹣1<0,此時ax2+bx+1=0無實數(shù)根,
當a= ,b=3時,△=b2﹣4ac=7>0,此時ax2+bx+1=0有兩個不相等的實數(shù)根,
當a= ,b=2時,△=b2﹣4ac=2>0,此時ax2+bx+1=0有兩個不相等的實數(shù)根,
當a= ,b=1時,△=b2﹣4ac=0,此時ax2+bx+1=0有兩個相等的實數(shù)根,
當a= ,b=3時,△=b2﹣4ac=8>0,此時ax2+bx+1=0有兩個不相等的實數(shù)根,
當a= ,b=2時,△=b2﹣4ac=3>0,此時ax2+bx+1=0有兩個不相等的實數(shù)根,
當a=1,b=1時,△=b2﹣4ac=﹣3<0,此時ax2+bx+1=0無實數(shù)根,
當a=1,b=3時,△=b2﹣4ac=5>0,此時ax2+bx+1=0有兩個不相等的實數(shù)根,
當a=1,b=2時,△=b2﹣4ac=0,此時ax2+bx+1=0有兩個相等的實數(shù)根,
∴P(甲獲勝)=P(△>0)= ,P(乙獲勝)=1﹣ = ,
∴P(甲獲勝)>P(乙獲勝),
∴這樣的游戲規(guī)則對甲有利,不公平
【解析】(1)畫出樹狀圖,由圖可知,共有9種等可能的結(jié)果;(2)計算根的判別式△<0或>0或=0,得到實數(shù)根的情況;P(甲獲勝)=P(△>0)= ,P(乙獲勝)=1﹣ =,所以這樣的游戲規(guī)則對甲有利,不公平.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點是的外角平分線上一點,且滿足,過點作于點,交的延長線于點,則下列結(jié)論:①;②;③;④.
其中正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校組織義捐義賣活動,小明的小組準備自制賀年卡進行義賣.活動當天,為了方便,小組準備了一些零錢備用,按照定價售出一些賀年卡后,又降價出售,小組所擁有的所有錢數(shù)(元)與售出卡片(張)之間的關(guān)系如圖所示.
(1)求降價前與之間的函數(shù)關(guān)系式.
(2)如果按照定價打八折后,將剩余的卡片全部賣出,這時,小組一共有元錢(含備用領(lǐng)錢),求該小組一共準備了多少張卡片?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游。
[來
根據(jù)以上信息,解答下列問題:
(1)設(shè)租車時間為小時,租用甲公司的車所需費用為元,租用乙公司的車所需費用為元,分別求出,關(guān)于的函數(shù)表達式;
(2)請你幫助小明計算并選擇哪個出游方案合算。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=2,AC=4,將△ABC繞點C按逆時針方向旋轉(zhuǎn)得到△A′B′C,使CB′∥AB,分別延長AB、CA′相交于點D,則線段BD的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P為△ABC的內(nèi)心,延長AP交△ABC的外接圓于D,在AC延長線上有一點E,滿足AD2=ABAE.
求證:DE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】材料1:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式因式分解.例如:,都是因式分解.因式分解也可稱為分解因式.
材料2:只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是的整式方程稱作一元二次方程.一元二次方程的般形式是:(其中,,為常數(shù)且).“轉(zhuǎn)化”是一種重要的數(shù)學思想方法,我們可以利用因式分解把部分一元二次方程轉(zhuǎn)化為一元一次方程求解.
例如解方程;
或
原方程的解是,
∴原方程的解是,
又如解方程:
原方程的解是
請閱讀以上材料回答以下問題:
(1)若,則_______;_______;
(2)請將下列多項式因式分解:
_______,________;
(3)在平面直角坐標系中,已知點,,其中是一元二次方程的解,為任意實數(shù),求長度的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=6,AC=8,點D為邊BC的中點,點M為邊AB上的一動點,點N為邊AC上的一動點,且∠MDN=90°,則cos∠DMN為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,A(a,0),C(b,2),且滿足(a+2)2+=0,過點C作CB⊥x軸于點B.
(1)求A、C兩點坐標;
(2)若過點B作BD∥AC交y軸于點D,且AE、DE分別平分∠CAB、∠ODB,如圖2,求∠AED的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com