【題目】如圖,正方形ABCD的邊長(zhǎng)為6,P為對(duì)角線AC上一點(diǎn),且CP=,PEPBCD于點(diǎn)E,則PE=

A.B.C.D.5

【答案】B

【解析】

過(guò)PPMBCM,作PNCDN,易證PBM≌△PEN,從而PB=PE,在RtPBM中求出BM、PM即可用勾股定理求解.

過(guò)PPMBCM,作PNCDN,

∵四邊形ABCD是正方形

∴∠BMP=PMC=MCN=CNP=90°CA平分∠BCD

PM=PN,∠MPN=90°

PEPB

∴∠BPM+MPC=90°,∠MPC+EPN=90°

∴∠BPM=EPN

PBM≌△PEN

PB=PE
RtPCM中,CP=4,∠PCM=45°

CM=PM=4
BM=BC-CM=2
RtPBM中,PM=4,BM=2
PB=

PE=PB=
故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO直徑,ACO的弦,過(guò)O外的點(diǎn)DDEOA于點(diǎn)E,交AC于點(diǎn)F,連接DC并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)P,且D=2∠A,作CHAB于點(diǎn)H

1)判斷直線DCO的位置關(guān)系,并說(shuō)明理由;

2)若HB=2,cosD=,請(qǐng)求出AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰ABC中,CA=CB=6,AB=6.點(diǎn)D在線段AB上運(yùn)動(dòng)(不與A、B重合),將CADCBD分別沿直線CA、CB翻折得到CAECBF,連接EF,則CEF面積的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).

(1)請(qǐng)?jiān)趫D中,畫(huà)出ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1;

(2)以點(diǎn)O為位似中心,將ABC縮小為原來(lái)的,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸右側(cè),畫(huà)出△A2B2C2,并求出∠A2C2B2的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為4-1).

1請(qǐng)以y軸為對(duì)稱(chēng)軸畫(huà)出與△ABC對(duì)稱(chēng)的△A1B1C1,并直接寫(xiě)出點(diǎn)A1、B1、C1的坐標(biāo)

2ABC的面積是

3點(diǎn)Pa+1,b-1與點(diǎn)C關(guān)于x軸對(duì)稱(chēng)a= ,b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,點(diǎn)上一點(diǎn),且平分,點(diǎn)上一點(diǎn),以為直徑的經(jīng)過(guò)點(diǎn)

求證:的切線;

的面積的面積,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=8,P,Q分別是直線BC,AB上的兩個(gè)動(dòng)點(diǎn),AE=2,AEQ沿EQ翻折形成FEQ,連接PF,PD,則PF+PD的最小值是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,以AB為直徑的⊙OAC邊交于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線交BC于點(diǎn)E,連接OE

(1)證明OEAD;

(2)①當(dāng)∠BAC=   °時(shí),四邊形ODEB是正方形.

②當(dāng)∠BAC=   °時(shí),AD=3DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=﹣x2+2nx﹣n2+n的頂點(diǎn)為P,直線y=分別交x,y軸于點(diǎn)M,N.

(1)若點(diǎn)P在直線MN上,求n的值;

(2)是否存在過(guò)(0,﹣2)的直線與拋物線交于A,B兩點(diǎn)(A點(diǎn)在B點(diǎn)的下方),使AB為定長(zhǎng),若存在,求出AB的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由;

(3)在(2)的條件下,當(dāng)四邊形MABN的周長(zhǎng)最小時(shí),求n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案