【題目】證明命題“角的平分線上的點到角的兩邊的距離相等”,要根據(jù)題意,畫出圖形,并用符號表示已知和求證,寫出證明過程,下面是小明同學根據(jù)題意畫出的圖形,并寫出了不完整的已知和求證.
已知:如圖,OC是∠AOB的角平分線,點 P 在 OC 上, 求證: .
(要求:請你補全已知和求證,并寫出證明過程.)
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù),(k為常數(shù),k≠1).
(1)若點A(1,2)在這個函數(shù)的圖象上,求k的值;
(2)若在這個函數(shù)圖象的每一分支上,y隨x的增大而增大,求k的取值范圍;
(3)若k=13,試判斷點B(3,4),C(2,5)是否在這個函數(shù)的圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)(﹣3)﹣(﹣2)+(﹣4);
(2)﹣10+14+16﹣8;
(3)(-4)×(-5)-90÷(-15);
(4)﹣23÷×(﹣)2;
(5)(+﹣)×(﹣36);
(6)﹣14﹣×[2﹣(﹣3)2]
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,連接BD,點O是BD的中點,若M、N是邊AD上的兩點,連接MO、NO,并分別延長交邊BC于兩點M′、N′,則圖中的全等三角形共有( 。
A. 2對 B. 3對 C. 4對 D. 5對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)分別交y軸、x 軸于A、B兩點,拋物線過A、B兩點。(1)求這個拋物線的解析式;(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N。求當t 取何值時,MN有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,半徑為1個單位的圓片上有一點A與數(shù)軸上的原點重合,AB是圓片的直徑.(注:結(jié)果保留π )
(1)把圓片沿數(shù)軸向右滾動半周,點B到達數(shù)軸上點C的位置,點C表示的數(shù)是 數(shù)(填“無理”或“有理”),這個數(shù)是 ;
(2)把圓片沿數(shù)軸滾動2周,點A到達數(shù)軸上點D的位置,點D表示的數(shù)是 ;
(3)圓片在數(shù)軸上向右滾動的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動的周數(shù)記為負數(shù),依次運動情況記錄如下:+2,﹣1,+3,﹣4,﹣3.
①第 次滾動后,A點距離原點最近,第 次滾動后,A點距離原點最遠.
②當圓片結(jié)束運動時,A點運動的路程共有 ,此時點A所表示的數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或?qū)?/span>△ACD繞著點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.
中線AD的取值范圍是 ;
(2)問題解決:
如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;
(3)問題拓展:
如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如下圖,在平面直角坐標系上有個點P(1,0),點P第1次向上跳動1個單位至點P1(1,1),緊接著第2次向左跳動2個單位至點P2(-1,1),第3次向上跳動1個單位,第4次向右跳動3個單位,第5次又向上跳動1個單位,第6次向左跳動4個單位…,依此規(guī)律跳動下去,點P第2019次跳動至點P2019的坐標是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
(1)在數(shù)軸上表示下列各數(shù):0,–2.5,,–2,+5,.
(2)將上列各數(shù)用“<”連接起來:___________ _____________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com