如圖,某校的圍墻由一段相同的凹曲拱組成,其拱狀圖形為拋物線的一部分,柵欄的跨徑AB間,按相同間隔0.2米用5根立柱加固,拱高OC為0.36米,則立柱EF的長為(  )
A.0.4米B.0.16米C.0.2米D.0.24米
如圖,以C坐標系的原點,OC所在直線為y軸建立坐標系,
設拋物線解析式為y=ax2,
由題知,圖象過B(0.6,0.36),
代入得:0.36=0.36a
∴a=1,即y=x2
∵F點橫坐標為-0.4,
∴當x=-0.4時,y=0.16,
∴EF=0.36-0.16=0.2米
故選C.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,一次函數(shù)y=x+k圖象過點A(1,0),交y軸于點B,C為y軸負半軸上一點,且OB=
1
2
BC,過A,C兩點的拋物線交直線AB于點D,且CDx軸.
(1)求這條拋物線的解析式;
(2)直接寫出使一次函數(shù)值小于二次函數(shù)值時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+1與x軸交于兩點A(-1,0),B(1,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)過點B作BDCA拋物線交于點D,求四邊形ACBD的面積;
(3)在x軸下方的拋物線上是否存在點M,過M作MN⊥x軸于點N,使以A、M、N為頂點的三角形與△BCD相似?若存在,則求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=-x2+mx+n經(jīng)過點A(1,0),B(O,-6).
(1)求拋物線的解析式;
(2)拋物線與x軸交于另一點D,求△ABD的面積;
(3)當y<0,直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

正常水位時,拋物線拱橋下的水面寬為20m,水面上升3m達到該地警戒水位時,橋下水面寬為10m.
(1)在恰當?shù)钠矫嬷苯亲鴺讼抵星蟪鏊娴綐蚩醉敳康木嚯xy(m)與水面寬x(m)之間的函數(shù)關系式;
(2)如果水位以0.2m/h的速度持續(xù)上漲,那么達到警戒水位后,再過多長時間此橋孔將被淹沒?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形ABCD的長、寬分別為3和2,OB=2,點E的坐標為(3,4)連接AE、ED.
(1)求經(jīng)過A、E、D三點的拋物線的解析式.
(2)以原點為位似中心,將五邊形ABCDE放大.
①若放大后的五邊形的邊長是原五邊形對應邊長的2倍,請在網(wǎng)格中畫出放大后的五邊形A2B2C2D2E2,并直接寫出經(jīng)過A2、D2、E2三點的拋物線的解析式:______;
②若放大后的五邊形的邊長是原五邊形對應邊長的k倍,請你直接寫出經(jīng)過Ak、Dk、Ek三點的拋物線的解析式:______(用含k的字母表示).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知直線y=-x+4分別交x軸、y軸于點A、C,過A、C兩點的拋物線y=ax2-2ax+c交x軸于另一點B.
(1)求該拋物線的解析式;
(2)若動點Q從點B出發(fā),以每秒2個單位長度沿線段BA方向運動,同時動直線l從x軸出發(fā),以每秒1個單位長度沿y軸方向平行移動,直線l交AC與D,交BC于E,當點Q運動到點A時,兩者都停止運動.設運動時間為t秒,△QED的面積為S.
①求S與t的函數(shù)關系式:并探究:當t為何值時,S有最大值為多少?
②在點Q及直線l的運動過程中,是否存在△QED為直角三角形?若存在,請求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖①所示,在直角梯形ABCD中,∠BAD=90°,E是直線AB上一點,過E作直線lBC,交直線CD于點F.將直線l向右平移,設平移距離BE為t(t≥0),直角梯形ABCD被直線l掃過的面積(圖中陰影部分)為S,S關于t的函數(shù)圖象如圖②所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點橫坐標為4.

信息讀取
(1)梯形上底的長AB=______;
(2)直角梯形ABCD的面積=______;
圖象理解
(3)寫出圖②中射線NQ表示的實際意義;
(4)當2<t<4時,求S關于t的函數(shù)關系式;
問題解決
(5)當t為何值時,直線l將直角梯形ABCD分成的兩部分面積之比為1:3.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在一面靠墻的空地上用長為24米的籬笆,圍成中間隔有二道籬笆的長方形花圃,墻的最大可用長度為8米,設花圃的寬AB為x米,面積為S平方米.
(1)求S與x的函數(shù)關系式;
(2)求自變量的取值范圍;
(3)當x取何值時所圍成的花圃面積最大,最大值是多少?

查看答案和解析>>

同步練習冊答案