如圖,是5×5的正方形網(wǎng)絡,方格紙中△ABC的3個頂點分別在小正方形的頂點(格點)上,這樣的三角形叫格點三角形,如果以點D、E為兩個頂點作位置不同的格點三角形,使所作的格點三角形與△ABC全等,那么,這樣的格點三角形最多可以畫出________個.

4
分析:根據(jù)全等三角形的判定定理(SAS,ASA,AAS,SSS)判斷后畫出即可.
解答:
解:共4個三角形,如圖
故答案為:4.
點評:本題考查了全等三角形的判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,等腰梯形ABCD的邊BC在x軸上,點A在y軸的正方向上,A(0,6),D(精英家教網(wǎng)4,6),且AB=2
10

(1)求點B的坐標;
(2)求經(jīng)過A、B、D三點的拋物線的解析式;
(3)點C是不是也在(2)中的拋物線上,若在請證明,若不在請說明理由;
(4)在(2)中所求的拋物線上是否存在一點P,使得S△PBC=
1
2
S梯形ABCD
?若存在,請求出該點坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,Rt△ABC的頂點均在個點上,在建立平面直角坐標系后,點A的坐標為(-6,1),點B的坐標為(-3,1),點C的坐標為(-3,3).
(1)將Rt△ABC沿x軸正方向平移5個單位得到Rt△A1B1C1,試在圖上畫出的圖形Rt△A1B1C1,并寫出點A1的坐標;
(2)將原來的Rt△ABC繞點B順時針旋轉90°得到Rt△A2B2C2,試在圖上畫出Rt△A2B2C2的圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

點P是x軸正半軸上的一個動點,過點P作x軸的垂線PA交雙曲線y=
1
x
于點A,連接OA并延長,與雙曲線y=
1
x
交于點F,F(xiàn)H垂直于x軸,垂足為點H,連接AH、PF.
精英家教網(wǎng)
(1)如圖①,當點A的橫坐標為
3
2
時,求四邊形APFH的面積.
(2)如圖②,當點P在x軸的正方向上運動到點D,過點D作x軸的垂線交雙曲線于點B,連接BO并延長,與雙曲線y=
1
x
交于點F,F(xiàn)H垂直于x軸,垂足為點H,連接BH、DF,求四邊形BDFH的面積.
(3)若雙曲線的解析式為y=
k
x
,四邊形BDFH的面積為
 
.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•泉港區(qū)質檢)如圖,A、B的坐標分別為(8,4),(0,4).點C從原點O出發(fā)以每秒1單位的速度沿著x軸的正方向運動,設運動時間為t(0<t<5).點D在x軸上,坐標為(t+3,0),過點D作x軸的垂線交AB于E點,交OA于G點,連接CE交OA于點F.
(1)填空:CD=
3
3
,CE=
5
5
,AE=
5-t
5-t
 (用含t的代數(shù)式表示);
(2)當△EFG的面積為
12
5
時,點G恰好在函數(shù)y=
k
x
第一象限的圖象上.試求出函數(shù)y=
k
x
的解析式;
(3)設點Q的坐標為(0,2t),點P在(2)中的函數(shù)y=
k
x
的圖象上,是否存在以A、C、Q、P為頂點的四邊形是平行四邊形?若存在,試求出點C、P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•鞍山)如圖:方格紙中的每個小方格都是邊長為1個單位的小正方形,四邊形ABCD和四邊形A1B1C1D1的頂點均在格點上,以點O為坐標原點建立平面直角坐標系.
(1)畫出四邊形ABCD沿y軸正方向平移4格得到的四邊形A2B2C2D2,并求出點D2的坐標.
(2)畫出四邊形A1B1C1D1繞點O逆時針方向旋轉90°后得到的四邊形A3B3C3D3,并求出A2、B3之間的距離.

查看答案和解析>>

同步練習冊答案