在三角形紙片ABC中,已知∠ABC=90°,AB=6,BC=8.過點A作直線l平行于BC,折疊三角形紙片ABC,使直角頂點B落在直線l上的T處,折痕為MN.當點T在直線l上移動時,折痕的端點M、N也隨之移動.若限定端點M、N分別在AB、BC邊上移動,則線段AT長度的最大值與最小值之和為______(計算結(jié)果不取近似值).
當點M與A重合時,AT取最大值是6,
當點N與C重合時,由勾股定理得此時AT取最小值為8-
82-62
=8-2
7

所以線段AT長度的最大值與最小值之和為:6+8-2
7
=14-2
7

故答案為:14-2
7

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按圖中所示方法將△BCD沿BD折疊,使點C落在AB邊的C′點,那么△ADC′的面積是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,一張寬為6cm的矩形紙片,按圖示加以折疊,使得一角頂點落在AB邊上,則折痕DF=______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在下列說法中,正確的是( 。
A.如果兩個三角形全等,則它們一定能關(guān)于某直線成軸對稱
B.如果兩個三角形關(guān)于某直線成軸對稱,那么它們是全等三角形
C.等腰三角形是以底邊高線為對稱軸的軸對稱圖形
D.若兩個圖形關(guān)于某直線對稱,則它們的對應點一定位于對稱軸的兩側(cè)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,在矩形ABCD中,AB=6,AD=2
3
,點P是邊BC上的動點(點P不與點B,C重合),過點P作直線PQBD,交CD邊于Q點,再把△PQC沿著動直線PQ對折,點C的對應點是R點.設CP=x,△PQR與矩形ABCD重疊部分的面積為y.
(1)求∠CPQ的度數(shù).
(2)當x取何值時,點R落在矩形ABCD的邊AB上?
(3)當點R在矩形ABCD外部時,求y與x的函數(shù)關(guān)系式.并求此時函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

操作與探究:
在八年級探究“直角三角形斜邊上的中線等于斜邊的一半”這個結(jié)論時,我們是將一塊直角三角形紙片按照圖①方法折疊(點A與點C重合,DE為折痕).再將圖①中的△CBE沿對稱軸EF折疊(如圖②),通過折疊,可以發(fā)現(xiàn)CE=AE=BE=
1
2
AB.
(1)在上述的折疊過程中,我們還可以發(fā)現(xiàn)原三角形恰好折成兩個重合的矩形,其中一個是內(nèi)接矩形,另一個是拼合(指無縫無重疊)所成的矩形,我們稱這樣的兩個矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個組合矩形嗎?如果能折成,請在圖③中畫出折痕;
(2)有一些特殊的四邊形,如菱形,通過折疊也能折成組合矩形(其中的內(nèi)接矩形的四個頂點分別在原四邊形的四條邊上).請你進一步探究,一個非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足什么條件時,一定能折成組合矩形?
滿足的條件是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:三角形紙片ABC中,∠C=90°,AB=12,BC=6,B′是邊AC上一點.將三角形紙片折疊,使點B與點B′重合,折痕與BC、AB分別相交于E、F.
(1)設BE=x,B′C=y,試建立y關(guān)于x的函數(shù)關(guān)系式,并直接寫出x的取值范圍;
(2)當△AFB′是直角三角形時,求出x的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

我們知道三角形的一條中線能將這個三角形分成面積相等的兩個三角形,反之,若經(jīng)過三角形的一個頂點引一條直線將這個三角形分成面積相等兩個三角形,那么這條直線平分三角形的這個頂點的對邊.如圖1,若S△ABD=S△ADC,則BD=CD成立.
請你直接應用上述結(jié)論解決以下問題:

(1)已知:如圖2,AD是△ABC的中線,沿AD翻折△ADC,使點C落在點E,DE交AB于F,若△ADE與△ADB重疊部分面積等于△ABC面積的
1
4
,問線段AE與線段BD有什么關(guān)系?在圖中按要求畫出圖形,并說明理由.
(2)已知:如圖3,在△ABC中,∠ACB=90°,AC=2,AB=4,點D是AB邊的中點,點P是BC邊上的任意一點,連接PD,沿PD翻折△ADP,使點A落在E,若△PDE與△PDB重疊部分的面積等于△ABP面積的
1
4
,直接寫出BP2的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線l旁有兩點A,B,在直線上找一點C使到A,B兩點的距離之和最小.在直線上找一點D使到A,B兩點的距離相等.

查看答案和解析>>

同步練習冊答案