(1)如圖所示的正方體表面分別標(biāo)上字母A~F,問這個正方體各個面上的字母對面各是什么字母?

(2)在數(shù)軸上表示下列各數(shù):0,-2.5,3
1
2
,-2,+5,1
1
3
,并用“>”比較它們的大小.
分析:(1)根據(jù)與A相鄰的面是B、C、D、F,確定出A的對面是E,D的對面是A、C、E、F確定出點(diǎn)D的對面是B,再求出C的對面字母即可;
(2)根據(jù)數(shù)軸表示出各數(shù)的位置即可,然后按照從大到小的順序連接即可.
解答:解:(1)由圖可知,與A相鄰的面是B、C、D、F,
∴A的對面是E,
∵D的對面是A、C、E、F,
∴點(diǎn)D的對面是B,
∴點(diǎn)C與點(diǎn)F是對面;

(2)在數(shù)軸上表示為:

用“>”連接為:+5>3
1
2
>1
1
3
>0>-2>-2.5.
點(diǎn)評:本題主要考查了正方體相對兩個面上的文字,注意正方體的空間圖形,觀察出相鄰的四個面是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,帆船A和帆船B在太湖湖面上訓(xùn)練,O為湖面上的一個定點(diǎn),教練船靜候于點(diǎn)O,訓(xùn)練時要求A、B兩船始終關(guān)于O點(diǎn)對稱.以O(shè)為原點(diǎn),建立如圖所示的坐標(biāo)系,x軸、y軸的正方向分別表示正東、正北方向.設(shè)A、B兩船可近似看成在雙曲線y=
4x
上運(yùn)動,湖面風(fēng)平浪靜,雙帆遠(yuǎn)影優(yōu)美,訓(xùn)練中檔教練船與A、B兩船恰好在直線y=x上時,三船同時發(fā)現(xiàn)湖面上有一遇險的C船,此時教練船測得C船在東南45°方向上,A船測得AC與AB的夾角為60°,B船也同時測得C船的位置(假設(shè)C船位置不再改變,A、B、C三船可分別用A、B、C三點(diǎn)表示).
(1)發(fā)現(xiàn)C船時,A、B、C三船所在位置的坐標(biāo)分別為A(
 
,
 
)、B(
 
,
 
)和C(
 
,
 
);
(2)發(fā)現(xiàn)C船,三船立即停止訓(xùn)練,并分別從A、O、B三點(diǎn)出發(fā)沿最短路線同時前往救援,設(shè)A、B兩船的速度相等,教練船與A船的速度之比為3:4,問教練船是否最先趕到?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、若在上述折疊的正方體表面上畫如圖所示的線段,請你在展開圖上標(biāo)出對應(yīng)的其它兩條線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

△ABC是頂點(diǎn)在如圖所示的方格紙中的格點(diǎn)上的三角形.
(1)在這個方格紙中,把△ABC向上平移5格,得△A1B1C1,再將△A1B1C1繞點(diǎn)C1按順時針方向旋轉(zhuǎn)180°得△A2B2C1,請?jiān)诜礁窦堉挟嫵觥鰽1B1C1和△A2B2C1;
(2)若以點(diǎn)B為坐標(biāo)原點(diǎn),BC為x軸的正方向建立直角坐標(biāo)系(方格紙中一個小正方形的邊長為1個單位長),畫出這個坐標(biāo)系,寫出第一次變換后所得△A1B1C1的各頂點(diǎn)和第二次變換后所得△A2B2C1的各頂點(diǎn)的坐標(biāo);并求A點(diǎn)經(jīng)過2次變換后到達(dá)點(diǎn)A2所經(jīng)過路徑長度是多少個單位長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中的方格陣表示一個縱橫交錯的街道模型的一部分,以O(shè)為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,x軸,y軸的正方向分別表示正東、正北方向,出租車只能沿街道(網(wǎng)格線)行駛,且從一個路口(格點(diǎn))到另一個路口,必須選擇最短路線,稱最短路線的長度為兩個街區(qū)之間的“出租車距離”.設(shè)圖中每個小正方形方格的邊長為1個單位.可以發(fā)現(xiàn):
從原點(diǎn)O到(2,-1)的“出租車距離”為3,最短路線有3條;
從原點(diǎn)O到(2,2)的“出租車距離”為4,最短路線有6條.
(1)①從原點(diǎn)O到(6,1)的“出租車距離”為
7
7
.最短路線有
7
7
條;
②與原點(diǎn)O的“出租車距離”等于30的路口共有
120
120
個.
(2)①解釋應(yīng)用:從原點(diǎn)O到坐標(biāo)(n,2)(n為大于2的整數(shù))的路口A,有多少條最短路線?(請給出適當(dāng)?shù)恼f理或過程)
②解決問題:
從坐標(biāo)為(1,-2)的路口到坐標(biāo)為(3,36)的路口,最短路線有
780
780
條.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一個透明的玻璃正方體內(nèi)鑲嵌了一條鐵絲(如圖所示的粗線),請指出右邊的兩個圖是從正方體的哪個方向看到的視圖.
俯視圖
俯視圖
;
主視圖
主視圖

查看答案和解析>>

同步練習(xí)冊答案