【題目】如圖,直線l:y=x﹣2分別交x,y軸于A、B兩點(diǎn),C、D是直線l上的兩個(gè)動(dòng)點(diǎn),點(diǎn)C在第一象限,點(diǎn)D在第三象限.且始終有∠COD=135°.
(1)求證:△OAC∽△DBO;
(2)若點(diǎn)C、D都在反比例函數(shù)y=的圖象上,求k的值;
(3)記△OBD的面積為S1,△AOC的面積為S2,且=,二次函數(shù)y=ax2+bx+c滿足以下兩個(gè)條件:①圖象過C、D兩點(diǎn);②當(dāng)S1xS2時(shí),y有最大值2,求a的值.
【答案】(1)見解析;(2);(3)
【解析】
(1)先求出點(diǎn)A,點(diǎn)B坐標(biāo),可求∠OAB=∠OBA=45°,由外角的性質(zhì)可求∠DOB=∠ACO,∠AOC=∠ODB,可證△OAC∽△DBO;
(2)由相似三角形的性質(zhì)可得,設(shè)=a>0,用a表示點(diǎn)C,點(diǎn)D坐標(biāo),代入反比例函數(shù)解析式,可求解;
(3)先求出點(diǎn)C,點(diǎn)D坐標(biāo),代入解析式,由題意可得當(dāng)x=2時(shí),y有最大值2,組成方程組,可求a的值.
解:(1)∵直線l:y=x﹣2分別交x,y軸于A、B兩點(diǎn),
∴點(diǎn)A(2,0),點(diǎn)B(0,﹣2),
∴AO=BO=2,
∴∠OAB=∠OBA=45°,
∴∠OCA+∠AOC=45°,∠ODB+∠DOB=45°,
∵∠COD=135°,
∴∠DOB+∠AOB+∠AOC=135°,
∴∠DOB+∠AOC=45°,
∴∠DOB=∠ACO,∠AOC=∠ODB,
∴△OAC∽△DBO;
(2)如圖,過點(diǎn)C作CF⊥x軸于F,過點(diǎn)D作DE⊥y軸于E,
∵△OAC∽△DBO,
∴,
∴設(shè)=a>0,
∴BD=,AC=2a,
∵∠CAF=∠OAB=45°,
∴∠ACF=∠CAF=45°,
∴AF=CF==a,
∴點(diǎn)C坐標(biāo)(2+a,a),
同理可求點(diǎn)D坐標(biāo)(﹣,﹣2﹣),
∵點(diǎn)C、D都在反比例函數(shù)y=的圖象上,
∴(2+a)a=(2+)
∴(a2+2a+)(a+1)(a﹣1)=0,
∵a>0,
∴a2+2a+≠0,a+1≠0,
∴a﹣1=0,
∴點(diǎn)C(2+,)
∴k=(2+)=;
(3)∵△OAC∽△DBO,
∴,
∴,
∴AC=2,
∴AF=CF=2,
∴點(diǎn)C(4,2),
∵,
∴ ,
∴BD=,
∴DE=BE=1,
∴點(diǎn)D(﹣1,﹣3),
∴△OBD的面積為S1=×2×1=1,△AOC的面積為S2=×2×2=2,
∵二次函數(shù)y=ax2+bx+c滿足以下兩個(gè)條件:①圖象過C、D兩點(diǎn);②當(dāng)1≤x≤2時(shí),y有最大值2,
∴,
解得: ,
∴a=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年初,一場(chǎng)突如其來的疫情,讓本該回到學(xué)校的學(xué)子們宅在家里上網(wǎng)課.為了解學(xué)生對(duì)網(wǎng)課的滿意度,某校隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查(每人必須且只選其中一項(xiàng)),并將統(tǒng)計(jì)結(jié)果繪制成如下統(tǒng)計(jì)圖(不完整),請(qǐng)根據(jù)圖中信息回答問題:
(1)求被隨機(jī)抽取的學(xué)生數(shù)及m的值,并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)在扇形統(tǒng)計(jì)圖中,求滿意度為“非常不滿意”所對(duì)應(yīng)的扇形圓心角的度數(shù).
(3)若該校共有學(xué)生3000人,估計(jì)上網(wǎng)課滿意度為“非常滿意”和“滿意”的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】報(bào)刊零售點(diǎn)從報(bào)社以每份0.30元買進(jìn)一種晚報(bào),零售點(diǎn)賣出的價(jià)格為0.50元,約定賣不掉的報(bào)紙可以退還給報(bào)社,退還的錢數(shù)y(元)與退還的報(bào)紙數(shù)量k(份)之間的函數(shù)關(guān)系式如下:當(dāng)0≤k<30時(shí), y=;當(dāng)k≥30時(shí),y=0.02k,現(xiàn)經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在一個(gè)月中(按30天記數(shù))有20天可賣出150份/天,有10天只能賣出100份/天,而報(bào)社規(guī)定每天批發(fā)給攤點(diǎn)的報(bào)紙的數(shù)量必須相同.
(1)若該家報(bào)刊攤點(diǎn)每天從報(bào)社買進(jìn)的報(bào)紙數(shù)x份(滿足100<x≤150),月毛利潤(rùn)為W元,求W關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)買進(jìn)多少報(bào)紙時(shí),月毛利潤(rùn)最大?為多少?(注:月毛利潤(rùn)=月總銷售額-月總成本).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解“停課不停學(xué)”期間,學(xué)生對(duì)線上學(xué)習(xí)方式的偏好情況,某校隨機(jī)抽取40名學(xué)生進(jìn)行問卷調(diào)查,其統(tǒng)計(jì)結(jié)果如表:
最喜歡的線上學(xué)習(xí)方式(每人最多選一種) | 人數(shù) |
直播 | 10 |
錄播 | a |
資源包 | 5 |
線上答疑 | 8 |
合計(jì) | 40 |
(1)a= ;
(2)若將選取各種“最喜歡的線上學(xué)習(xí)方式”的人數(shù)所占比例繪制成扇形統(tǒng)計(jì)圖,求“直播”對(duì)應(yīng)扇形的圓心角度數(shù);
(3)根據(jù)調(diào)查結(jié)果估計(jì)該校1000名學(xué)生中,最喜歡“線上答疑”的學(xué)生人數(shù);
(4)在最喜歡“資源包”的學(xué)生中,有2名男生,3名女生.現(xiàn)從這5名學(xué)生中隨機(jī)抽取2名學(xué)生介紹學(xué)習(xí)經(jīng)驗(yàn),求恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校想知道九年級(jí)學(xué)生對(duì)我國(guó)倡導(dǎo)的“一帶一路”的了解程度,隨機(jī)抽取部分九年級(jí)學(xué)生進(jìn)行問卷調(diào)查,問卷設(shè)有4個(gè)選項(xiàng)(每位被調(diào)查的學(xué)生必選且只選一項(xiàng)):A.非常了解.B.了解.C.知道一點(diǎn).D.完全不知道.將調(diào)查的結(jié)果繪制如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息,解答下列問題:
(1)求本次共調(diào)查了多少學(xué)生?
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校九年級(jí)共有600名學(xué)生,請(qǐng)你估計(jì)“了解”的學(xué)生約有多少名?
(4)在“非常了解”的3人中,有2名女生,1名男生,老師想從這3人中任選兩人做宣傳員,請(qǐng)用列表或畫樹狀圖法求出被選中的兩人恰好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,BC=10,對(duì)角線AC⊥AB,點(diǎn)EF在BC、AD上,且BE=DF.
(1)求證:四邊形AECF是平行四邊形;
(2)當(dāng)四邊形AECF是菱形時(shí),求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校全體學(xué)生積極參加校團(tuán)委組織的“獻(xiàn)愛心捐款”活動(dòng),為了解捐款情況,隨機(jī)抽取了部分學(xué)生并對(duì)他們的捐款情況作了統(tǒng)計(jì),繪制了兩幅不完整的統(tǒng)計(jì)圖(統(tǒng)計(jì)圖中每組含最小值,不含最大值).請(qǐng)依據(jù)圖中信息解答下列問題:
(1)求隨機(jī)抽取的學(xué)生人數(shù);
(2)填空:(直接填答案)
①“20元~25元”部分對(duì)應(yīng)的圓心角度數(shù)為______;
②捐款的中位數(shù)落在______(填金額范圍);
(3)若該校共有學(xué)生3500人,請(qǐng)估算全校捐款不少于20元的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人民生活水平的提高和環(huán)境的不斷改善,帶動(dòng)了旅游業(yè)的發(fā)展.某市旅游景區(qū)有A,B,C,D四個(gè)著名景點(diǎn),該市旅游部門統(tǒng)計(jì)繪制出2019年游客去各景點(diǎn)情況統(tǒng)計(jì)圖,根據(jù)給出的信息解答下列問題:
(1)2019年該市旅游景區(qū)共接待游客 萬人,扇形統(tǒng)計(jì)圖中C景點(diǎn)所對(duì)應(yīng)的圓心角的度數(shù)是 度;
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)甲,乙兩位同學(xué)去該景區(qū)旅游,用樹狀圖或列表法,求甲,乙兩位同學(xué)在A,B,D三個(gè)景點(diǎn)中,同時(shí)選擇去同一景點(diǎn)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),,,…和,,,…分別在直線和軸上.,,,…都是等腰直角三角形,它們的面積分別記作,,,…,如果點(diǎn)的坐標(biāo)為,那么的縱坐標(biāo)為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com