【題目】如圖,E是BC的中點(diǎn),點(diǎn)A在DE上,且∠BAE=∠CDE.
求證:AB=CD .
【答案】見解析
【解析】
此題要證明AB=CD,不能通過證明△ABE和△CED全等得到,因?yàn)楦鶕?jù)已知條件無法證明它們?nèi)龋荒敲纯梢岳玫妊切蔚男再|(zhì)來解題,為此必須把AB和CD通過作輔助線轉(zhuǎn)化到一個等腰三角形中,而延長DE到F,使EF=DE,連接BF就可以達(dá)到要求,然后利用全等三角形的判定與性質(zhì)就可以證明題目的問題.
證明:延長DE至點(diǎn)F,使EF=DE,連接BF.
∵E是BC的中點(diǎn)
∴BE=CE
在△BEF和△CED中
∴△BEF≌△CED
∴∠BFE=∠CDE,BF=CD
又∵∠BAE=∠CDE
∴∠BFE=∠BAE
∴AB=BF
又∵BF=CD,
∴AB=CD
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CA=CB,∠ABC=72°,BD是高線,BE是角平分線,若AB=12cm,則CE=_______cm,則∠DBE=_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司銷售一種新型節(jié)能產(chǎn)品,現(xiàn)準(zhǔn)備從國內(nèi)和國外兩種銷售方案中選擇一種進(jìn)行銷售.若只在國內(nèi)銷售,銷售價格y(元/件)與月銷量x(件)的函數(shù)關(guān)系式為y=x+150,成本為20元/件,無論銷售多少,每月還需支出廣告費(fèi)62500元,設(shè)月利潤為w內(nèi)(元).若只在國外銷售,銷售價格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當(dāng)月銷量為x(件)時,每月還需繳納x2元的附加費(fèi),設(shè)月利潤為w外(元).
(1)當(dāng)x=1000時,y= 元/件,w內(nèi)= 元;
(2)分別求出w內(nèi),w外與x間的函數(shù)關(guān)系式(不必寫x的取值范圍);
(3)當(dāng)x為何值時,在國內(nèi)銷售的月利潤最大?若在國外銷售月利潤的最大值與在國內(nèi)銷售月利潤的最大值相同,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,,,P、Q分別在BC、CA上,并且AP、BQ分別是∠BAC、∠ABC的角平分線.求證:
(1);
(2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為統(tǒng)籌安排大課間體育活動,在各班隨機(jī)選取了一部分學(xué)生,分成四類活動:“籃球”、“羽毛球”、“乒乓球”、“其他”進(jìn)行調(diào)查,整理收集到的數(shù)據(jù),繪制成如下的兩幅統(tǒng)計(jì)圖.
(1)學(xué)校采用的調(diào)查方式是 ;學(xué)校共選取了 名學(xué)生;
(2)補(bǔ)全統(tǒng)計(jì)圖中的數(shù)據(jù):條形統(tǒng)計(jì)圖中羽毛球 人、乒乓球 人、其他 人、扇形統(tǒng)計(jì)圖中其他 %;
(3)該校共有1200名學(xué)生,請估計(jì)喜歡“乒乓球”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富學(xué)生課余生活,某區(qū)教育部分準(zhǔn)備在七年級開設(shè)興趣課堂,為了了解學(xué)生對音樂、書法、球類、繪畫這四個興趣小組的喜愛情況,在全區(qū)進(jìn)行隨機(jī)抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅統(tǒng)計(jì)圖(信息不完整),請根據(jù)圖中提供的信息,解答下面的問題:
(1)此次共調(diào)查了多少名同學(xué)?
(2)將條形圖補(bǔ)充完整,并計(jì)算扇形統(tǒng)計(jì)圖中音樂部分的圓心角的度數(shù);
(3)如果該區(qū)七年級共有2000名學(xué)生參加這4個課外興趣小組,則參加繪畫興趣小組的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣+bx+c與y軸交于點(diǎn)C,與x軸的兩個交點(diǎn)分別為A(﹣4,0),B(1,0).
(1)求拋物線的解析式;
(2)已知點(diǎn)P在拋物線上,連接PC,PB,若△PBC是以BC為直角邊的直角三角形,求點(diǎn)P的坐標(biāo);
(3)已知點(diǎn)E在x軸上,點(diǎn)F在拋物線上,是否存在以A,C,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】順次連結(jié)一四邊形各邊的中點(diǎn),若所得的四邊形是一個菱形,則原四邊形一定是( ).
A.矩形B.對角線相互垂直的四邊形
C.平行四邊形D.對角線相等的四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由邊長為1個單位長度的小正方形組成的10×10網(wǎng)格中,已知△ABC的頂點(diǎn)均為網(wǎng)格線的交點(diǎn).
(1)將△ABC向下平移5個單位長度,再向左平移1個單位長度,畫出平移后的△A1B1C1;
(2)畫出△A1B1C1關(guān)于直線l軸對稱的△A2B2C2;
(3)將△ABC繞點(diǎn)C逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A3B3C3以A、A3、B、B3為頂點(diǎn)的四邊形的面積為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com