【題目】點(diǎn)AC為半徑是8的圓周上兩動(dòng)點(diǎn),點(diǎn)B的中點(diǎn),以線段BA、BC為鄰邊作菱形ABCD,頂點(diǎn)D恰在該圓半徑的中點(diǎn)上,則該菱形的邊長為_____

【答案】

【解析】

B作直徑,連接ACBOE,如圖①,根據(jù)已知條件得到BD=OB=4,求得OD、OE、DE的長,連接OC,根據(jù)勾股定理得到結(jié)論;如圖②,BD=12,求得OD、OEDE的長,連接OD,根據(jù)勾股定理得到結(jié)論.

B作直徑,連接ACBOE

∵點(diǎn)B的中點(diǎn),

BDAC,

如圖①,

∵點(diǎn)D恰在該圓直徑上,DOB的中點(diǎn),

BD=×8=4,

OD=OB-BD=4

∵四邊形ABCD是菱形,

DE=BD=2,

OE=2+4=6,

連接OC

CE=,

RtDEC中,由勾股定理得:DC=

如圖②,

OD=4,BD=8+4=12DE=BD=6,OE=6-4=2

由勾股定理得:CE=,

DC=,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖①所示,在ABCADE中,ABAC,ADAE,∠BAC=∠DAE,且點(diǎn)B,AD在一條直線上,連接BE,CD,M,N分別為BECD的中點(diǎn).

1)求證:①BECD;②AMN是等腰三角形;

2)在圖①的基礎(chǔ)上,將ADE繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)180°,其他條件不變,得到圖②所示的圖形.請(qǐng)直接寫出(1)中的兩個(gè)結(jié)論是否仍然成立;

3)在(2)的條件下,請(qǐng)你在圖②中延長ED交線段BC于點(diǎn)P.求證:PBD∽△AMN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)綜合實(shí)踐活動(dòng)中,小明計(jì)劃測量城門大樓的高度,在點(diǎn)B處測得樓頂A的仰角為22°,他正對(duì)著城樓前進(jìn)21米到達(dá)C處,再登上3米高的樓臺(tái)D處,并測得此時(shí)樓頂A的仰角為45°

1)求城門大樓的高度;

2)每逢重大節(jié)日,城門大樓管理處都要在A,B之間拉上繩子,并在繩子上掛一些彩旗,請(qǐng)你求出A,B之間所掛彩旗的長度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,CEBDECF平分∠DCEDB交于點(diǎn)F

1)求證:BFBC;

2)若AB4cm,AD3cm,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知yx的函數(shù),自變量x的取值范圍是x0的全體實(shí)數(shù),如表是yx的幾組對(duì)應(yīng)值.

x

3

2

1

1

2

3

y

m

小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的yx之間的變化規(guī)律,對(duì)該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小華的探究過程,請(qǐng)補(bǔ)充完整:

1)從表格中讀出,當(dāng)自變量是﹣2時(shí),函數(shù)值是   ;

2)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;

3)在畫出的函數(shù)圖象上標(biāo)出x2時(shí)所對(duì)應(yīng)的點(diǎn),并寫出m   

4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì):   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BAD=90°,點(diǎn)EBC的延長線上,且∠DEC=BAC.

(1)求證:DE是⊙O的切線;

(2)若ACDE,當(dāng)AB=8,CE=2時(shí),求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)AB,C的坐標(biāo)分別為(﹣2,4)、(﹣2,0)、(﹣4,1),將ABC繞原點(diǎn)O旋轉(zhuǎn)180度得到A1B1C1.平移ABC得到A2B2C2,使點(diǎn)A移動(dòng)到點(diǎn)A20,2),結(jié)合所給的平面直角坐標(biāo)系解答下列問題:

1)請(qǐng)畫出A1B1C1;

2)請(qǐng)直接寫出B2的坐標(biāo)   C2的坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),延長DEF,使得AFCD,連接BFCF

1)求證:四邊形AFCD是菱形;

2)當(dāng)AC4,BC3時(shí),求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+ca≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③ax2+bx+c=0的兩根分別為﹣3和1;④a﹣2b+c>0,其中正確的命題是( )

A. ①②③B. ①③C. ①④D. ①③④

查看答案和解析>>

同步練習(xí)冊(cè)答案