如圖,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=3,則DC的長是( )

A.
B.
C.
D.
【答案】分析:由已知先證△ABC∽△DAC,可證,即可求DC的長.
解答:解:∵AD⊥BC
∴∠ADC=90°
∵∠BAC=90°
∴∠ADC=∠BAC=90°
∵∠C=∠C
∴△ABC∽△DAC

∵AB=2,BC=3
∴AC=

∴DC=
故選D.
點評:此題考查了相似三角形的判定和性質,有兩角對應相等則此兩個三角形相似;相似三角形的對應邊成比例.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案