【題目】已知關(guān)于x的方程x2+ax+a﹣2=0
(1)若該方程的一個(gè)根為1,求a的值及該方程的另一根;
(2)求證:不論a取何實(shí)數(shù),該方程都有兩個(gè)不相等的實(shí)數(shù)根.
【答案】
(1)解:將x=1代入方程x2+ax+a﹣2=0得,1+a+a﹣2=0,解得,a= ;
方程為x2+ x﹣ =0,即2x2+x﹣3=0,設(shè)另一根為x1,則1x1=﹣ ,x1=﹣
(2)證明:∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4>0,
∴不論a取何實(shí)數(shù),該方程都有兩個(gè)不相等的實(shí)數(shù)根
【解析】(1)將x=1代入方程x2+ax+a﹣2=0得到a的值,再根據(jù)根與系數(shù)的關(guān)系求出另一根;(2)寫(xiě)出根的判別式,配方后得到完全平方式,進(jìn)行解答.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,DE⊥BC,垂足為點(diǎn)E,連接AC交DE于點(diǎn)F,點(diǎn)G為AF的中點(diǎn),∠ACD=2∠ACB.若AF=50,EC=7,則DE的長(zhǎng)為( )
A. 14 B. 21 C. 24 D. 25
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,⊙O的內(nèi)接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延長(zhǎng)線(xiàn)于D點(diǎn),OC交AB于E點(diǎn).
(1)求∠D的度數(shù);
(2)求證:AC2=ADCE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC= .對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,將直線(xiàn)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn).
(1)證明:當(dāng)旋轉(zhuǎn)角為90°時(shí),四邊形ABEF是平行四邊形;
(2)試說(shuō)明在旋轉(zhuǎn)過(guò)程中,線(xiàn)段AF與EC總保持相等;
(3)在旋轉(zhuǎn)過(guò)程中,四邊形BEDF可能是菱形嗎?如果不能,請(qǐng)說(shuō)明理由;如果能,說(shuō)明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A,B兩點(diǎn)的坐標(biāo)分別為(2 ,0),(0,10),M是△AOB外接圓⊙C上的一點(diǎn),且∠AOM=30°,則點(diǎn)M的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,出于營(yíng)銷(xiāo)考慮,要求每本紀(jì)念冊(cè)的售價(jià)不低于20元且不高于28元,在銷(xiāo)售過(guò)程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷(xiāo)售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間滿(mǎn)足一次函數(shù)關(guān)系:當(dāng)銷(xiāo)售單價(jià)為22元時(shí),銷(xiāo)售量為36本;當(dāng)銷(xiāo)售單價(jià)為24元時(shí),銷(xiāo)售量為32本.
(1)請(qǐng)直接寫(xiě)出y與x的函數(shù)關(guān)系式;
(2)當(dāng)文具店每周銷(xiāo)售這種紀(jì)念冊(cè)獲得150元的利潤(rùn)時(shí),每本紀(jì)念冊(cè)的銷(xiāo)售單價(jià)是多少元?
(3)設(shè)該文具店每周銷(xiāo)售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為w元,將該紀(jì)念冊(cè)銷(xiāo)售單價(jià)定為多少元時(shí),才能使文具店銷(xiāo)售該紀(jì)念冊(cè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把邊長(zhǎng)分別為4和6的矩形ABCO如圖放在平面直角坐標(biāo)系中,將它繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a角,旋轉(zhuǎn)后的矩形記為矩形EDCF.在旋轉(zhuǎn)過(guò)程中,
(1)如圖①,當(dāng)點(diǎn)E在射線(xiàn)CB上時(shí),E點(diǎn)坐標(biāo)為;
(2)當(dāng)△CBD是等邊三角形時(shí),旋轉(zhuǎn)角a的度數(shù)是(a為銳角時(shí));
(3)如圖②,設(shè)EF與BC交于點(diǎn)G,當(dāng)EG=CG時(shí),求點(diǎn)G的坐標(biāo);
(4)如圖③,當(dāng)旋轉(zhuǎn)角a=90°時(shí),請(qǐng)判斷矩形EDCF的對(duì)稱(chēng)中心H是否在以C為頂點(diǎn),且經(jīng)過(guò)點(diǎn)A的拋物線(xiàn)上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC和△A′B′C′在平面直角坐標(biāo)系中的位置分別如圖所示.
(1)分別寫(xiě)出下列各點(diǎn)的坐標(biāo):A_______;B_______;C_______;
(2)△ABC由△A′B′C′經(jīng)過(guò)怎樣的平移得到?
答:_____________________________________
(3)求△ABC面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(A類(lèi))已知如圖,四邊形ABCD中,AB=BC,AD=CD,求證:∠A=∠C.
(B類(lèi))已知如圖,四邊形ABCD中,AB=BC,∠A=∠C,求證:AD=CD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com