【題目】如圖,直線軸、軸分別交于點、點,以線段為直角邊在第一象限內(nèi)作等腰直角三角形,,點為坐標(biāo)系中的一個動點.

1)請直接寫出直線的表達式;

2)求出的面積;

3)當(dāng)面積相等時,求實數(shù)的值.

【答案】1;(2;(3)當(dāng)面積相等時,實數(shù)的值為.

【解析】

1)設(shè)y=kx+b,把、點代入,用待定系數(shù)法求解即可;

2)先根據(jù)勾股定理求出AB的長,然后根據(jù)三角形的面積公式求解即可;

3)分點在第一象限和點在第四象限兩種情況求解即可.

解:(1)設(shè)y=kx+b,把、點代入,得

,

解得

,

;

2)∵、

OA=3,OB=2,

中,依勾股定理得:

為等腰直角三角形,

;

3)連接,則:

若點在第一象限時,如圖:

,

,

,解得;

若點在第四象限時,如圖:

,

,解得,

∴當(dāng)面積相等時,實數(shù)的值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC和△DEF為等腰三角形,ABAC,DEDF,∠BAC=∠EDF,點EAB上,點F在射線AC.

(1)如圖1,若∠BAC60°,點F與點C重合,

①求證:AFAE+AD.

②求證:ADBC.

(2)如圖2,若ADAB,那么線段AF,AE,BC之間存在怎樣的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將線段繞點逆時針旋轉(zhuǎn)角度得到線段,連接,又將線段繞點逆時針旋轉(zhuǎn)得線段(如圖①).

的大小(結(jié)果用含的式子表示);

又將線段繞點順時針旋轉(zhuǎn)得線段,連接(如圖)求;

連接、,試探究當(dāng)為何值時,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=60°,點P是∠AOB內(nèi)的定點且OP=,若點M、N分別是射線OA、OB上異于點O的動點,則PMN周長的最小值是(  )

A. B. C. 6 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李先生參加了清華同方電腦公司推出的分期付款購買電腦活動,他購買的電腦價格為萬元,交了首付之后每月付款元,月結(jié)清余款.的函數(shù)關(guān)系如圖所示,試根據(jù)圖象提供的信息回答下列問題.

確定的函數(shù)關(guān)系式,并求出首付款的數(shù)目;

如打算每月付款不超過元,李先生至少幾個月才能結(jié)清余款?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣(2k+1)x+k2+1=0.

(1)若方程有兩個不相等的實數(shù)根,求k的取值范圍;

(2)若方程的兩根恰好是一個矩形兩鄰邊的長,且k=2,求該矩形的對角線L的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)方法解下列方程

(1)x2﹣9=0;

(2)x2+4x﹣3=0

(3)(x﹣2)2=3(x﹣2)

(4)(x+3)2=(2x﹣1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的方程.

(1)求證:方程總有實根;(2)若方程的根為正整數(shù),求整數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知ab7,ab10,求a2b2,(ab)2的值;

(2)先化簡(-,并回答:原代數(shù)式的值可以等于-1嗎?為什么?

查看答案和解析>>

同步練習(xí)冊答案