【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.
【答案】(1)拋物線的解析式為:y=﹣x2+x+2
(2)存在,P1(,4),P2(,),P3(,﹣)
(3)當點E運動到(2,1)時,四邊形CDBF的面積最大,S四邊形CDBF的面積最大=.
【解析】
試題(1)將點A、C的坐標分別代入可得二元一次方程組,解方程組即可得出m、n的值;
(2)根據(jù)二次函數(shù)的解析式可得對稱軸方程,由勾股定理求出CD的值,以點C為圓心,CD為半徑作弧交對稱軸于P1;以點D為圓心CD為半徑作圓交對稱軸于點P2,P3;作CH垂直于對稱軸與點H,由等腰三角形的性質(zhì)及勾股定理就可以求出結論;
(3)由二次函數(shù)的解析式可求出B點的坐標,從而可求出BC的解析式,從而可設設E點的坐標,進而可表示出F的坐標,由四邊形CDBF的面積=S△BCD+S△CEF+S△BEF可求出S與a的關系式,由二次函數(shù)的性質(zhì)就可以求出結論.
試題解析:(1)∵拋物線y=﹣x2+mx+n經(jīng)過A(﹣1,0),C(0,2).
解得:,
∴拋物線的解析式為:y=﹣x2+x+2;
(2)∵y=﹣x2+x+2,
∴y=﹣(x﹣)2+,
∴拋物線的對稱軸是x=.
∴OD=.
∵C(0,2),
∴OC=2.
在Rt△OCD中,由勾股定理,得
CD=.
∵△CDP是以CD為腰的等腰三角形,
∴CP1=CP2=CP3=CD.
作CH⊥x軸于H,
∴HP1=HD=2,
∴DP1=4.
∴P1(,4),P2(,),P3(,﹣);
(3)當y=0時,0=﹣x2+x+2
∴x1=﹣1,x2=4,
∴B(4,0).
設直線BC的解析式為y=kx+b,由圖象,得
,
解得:,
∴直線BC的解析式為:y=﹣x+2.
如圖2,過點C作CM⊥EF于M,設E(a,﹣a+2),F(xiàn)(a,﹣a2+a+2),
∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤x≤4).
∵S四邊形CDBF=S△BCD+S△CEF+S△BEF=BDOC+EFCM+EFBN,
=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),
=﹣a2+4a+(0≤x≤4).
=﹣(a﹣2)2+
∴a=2時,S四邊形CDBF的面積最大=,
∴E(2,1).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A=30°,以點B為圓心,適當長為半徑的畫弧,分別交BA,BC于點M、N;再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線BP交AC于點D,則下列說法中不正確的是()
A. BP是∠ABC的平分線B. AD=BDC. D. CD=BD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB⊥BC,BF=CF,∠C=30°,D是AC的中點,E是CD的中點,連接BE,AF交于G,連接DG.
(1)若E到BC的距離為2,求AB的長;
(2)證明:GD平分∠AGE;
(3)猜想BG,FG,GD,AF的數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知為所在平面內(nèi)一點,且,,,垂足分別為點、,.
(1)如圖1,當點在邊上時,判斷的形狀;并證明你的結論;
(2)如圖2,當點在內(nèi)部時,(1)中的結論是否仍然成立?若成立,請證明:若不成立,請舉出反例(畫圖說明,不需證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】901班的全體同學根據(jù)自己的興趣愛好參加了六個學生社團(每個學生必須參加且只參加一個),為了了解學生參加社團的情況,學生會對該班參加各個社團的人數(shù)進行了統(tǒng)計,繪制成了如圖不完整的扇形統(tǒng)計圖,已知參加“讀書社”的學生有15人,請解答下列問題:
(1)該班的學生共有 名;
(2)若該班參加“吉他社”與“街舞社”的人數(shù)相同,請你計算,“吉他社”對應扇形的圓心角的度數(shù);
(3)901班學生甲、乙、丙是“愛心社”的優(yōu)秀社員,現(xiàn)要從這三名學生中隨機選兩名學生參加“社區(qū)義工”活動,請你用畫樹狀圖或列表的方法求出恰好選中甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩個全等直角三角形重疊在一起,將其中一個三角形沿著點B到點C的方向平移到△DEF的位置,AB=8,DH=3,平移距離為4,則陰影部分(即四邊形DOCF)的面積為___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一張長方形ABCD紙張中,一邊BC折疊后落在對角線BD上,點E為折痕與邊CD的交點,若AB=5,BC=12,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側)兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).
(1)求點B,C的坐標;
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關系式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當D在AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com