【題目】如圖,在菱形ABCD中,∠DAB=45°,AB=4,點(diǎn)P為線段AB上一動(dòng)點(diǎn)(不與點(diǎn)A重合),過(guò)點(diǎn)PPEAB交射線AD于點(diǎn)E,沿PEAPE折疊,點(diǎn)A的對(duì)稱點(diǎn)為點(diǎn)F,連接EF,DFCF,當(dāng)CDF為等腰三角形時(shí),AP的長(zhǎng)為________

【答案】2,

【解析】

根據(jù)題意分DF=CD、CF=CDFD=FC三種情況先得出相應(yīng)的圖形,由此進(jìn)一步結(jié)合相關(guān)信息加以分析即可.

如圖1,當(dāng)DF=CD時(shí),點(diǎn)F點(diǎn)處,作DNAB于點(diǎn)N,

∵四邊形ABCD是菱形,AB=4,

CD=AD=4

RtAND中,

∵∠DAN=45°,AD=4,

DN=AN=

又∵DA=D,且DNAB,

N=AN=,

AP=;

如圖2,當(dāng)CF=CD=4時(shí),點(diǎn)F與點(diǎn)B重合或在點(diǎn)處,

①點(diǎn)F與點(diǎn)B重合時(shí),則PEAB的垂直平分線,

AP=;

②點(diǎn)F點(diǎn)處時(shí),過(guò)點(diǎn)CCMAB于點(diǎn)M,

易得:∠DAB==45°,CB==4,

CM==BM=,

=,

AP=

此時(shí)點(diǎn)E不在線段AD上,舍去;

如圖3,當(dāng)FD=FC時(shí),過(guò)點(diǎn)FFQCD于點(diǎn)Q,交BC于點(diǎn)G

則:CQ=DQ=QG=2,FQ=,

BF=GF=

AF=,

AP=

綜上所述,AP的長(zhǎng)度為:2,,

故答案為:2,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究:在平面直角坐標(biāo)系中,已知拋物線軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)),與軸交于點(diǎn),它的對(duì)稱軸與軸交于點(diǎn),直線經(jīng)過(guò),兩點(diǎn),連接

1)求,兩點(diǎn)的坐標(biāo)及直線的函數(shù)表達(dá)式;

2)探索直線上是否存在點(diǎn),使為直角三角形,若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由;

3)若點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),試探究在拋物線上是否存在點(diǎn)

①使以點(diǎn),,為頂點(diǎn)的四邊形為菱形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由;

②使以點(diǎn),,為頂點(diǎn)的四邊形為矩形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的頂點(diǎn)A、C在平面直角坐標(biāo)系的坐標(biāo)軸上,AB=4,CB=3,點(diǎn)D與點(diǎn)A關(guān)于y軸對(duì)稱,點(diǎn)E、F分別是線段DA、AC上的動(dòng)點(diǎn)(點(diǎn)E不與A、D重合),且∠CEF=ACB,若△EFC為等腰三角形,則點(diǎn)E的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,AB<AC,點(diǎn)D、F分別為BC、AC的中點(diǎn),E點(diǎn)在邊AC上,連接DE,過(guò)點(diǎn)BDE的垂線交AC于點(diǎn)G,垂足為點(diǎn)H,且與四邊形ABDE的周長(zhǎng)相等,設(shè)AC=b,AB=c

1)求線段CE的長(zhǎng)度;

2)求證:DF=EF;

3)若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是垂直于水平面的建筑物,為測(cè)量的高度,小紅從建筑物底端出發(fā),沿水平方向行走了52米到達(dá)點(diǎn),然后沿斜坡前進(jìn),到達(dá)坡頂點(diǎn)處,.在點(diǎn)處放置測(cè)角儀,測(cè)角儀支架高度為0.8米,在點(diǎn)處測(cè)得建筑物頂端點(diǎn)的仰角(點(diǎn),,在同一平面內(nèi)),斜坡的坡度(或坡比),求建筑物的高度.(精確到個(gè)位)(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某科技公司研發(fā)出一款多型號(hào)的智能手表,一家代理商出售該公司的型智能手表,去年銷售總額為80000元,今年型智能手表的售價(jià)每只比去年降了600元,若今年售出的數(shù)量與去年相同的情況下,今年的銷售總額將比去年減少.

1)求今年型智能手表每只售價(jià)多少元?

2)今年這家代理商準(zhǔn)備新進(jìn)一批型智能手表和型智能手表共100只,它們的進(jìn)貨價(jià)與銷售價(jià)格如下表所示,若型智能手表進(jìn)貨量不超過(guò)型智能手表進(jìn)貨量的3倍,所進(jìn)智能手表可全部售完,請(qǐng)你設(shè)計(jì)出進(jìn)貨方案,使這批智能手表獲利最多,并求出最大利潤(rùn)是多少元?

型智能手表

型智能手表

進(jìn)價(jià)

1300元/只

1500元/只

售價(jià)

今年的售價(jià)

2300元/只

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖1,拋物線是由拋物線向右平移1個(gè)單位,再向下平移4個(gè)單位得到的,軸交于,兩點(diǎn)(的右側(cè)),直線經(jīng)過(guò)點(diǎn),與軸交于點(diǎn).

1)分別求出,的值;

2)如圖2,已知點(diǎn)是線段上任一點(diǎn)(不與重合),過(guò)點(diǎn)作軸垂線,交拋物線點(diǎn).當(dāng)在何處時(shí),四邊形面積最大,求出此時(shí)點(diǎn)坐標(biāo)及四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面坐標(biāo)系中,第1個(gè)正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)D的坐標(biāo)為(04),延長(zhǎng)CBx軸于點(diǎn)A1,作第2個(gè)正方形A1B1C1C,延長(zhǎng)C1B1x軸于點(diǎn)A2;作第3個(gè)正方形A2B2C2C1,按這樣的規(guī)律進(jìn)行下去,第5個(gè)正方形的邊長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),以原點(diǎn)O為圓心,1為半徑作圓,點(diǎn)P在直線上運(yùn)動(dòng),過(guò)點(diǎn)P作該圓的一條切線,切點(diǎn)為A,則PA的最小值為  

A. 3 B. 2 C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案