【題目】對給定的一張矩形紙片ABCD進行如下操作:先沿CE折疊,使點B落在CD邊上(如圖①),再沿CH折疊,這時發(fā)現(xiàn)點E恰好與點D重合(如圖②)
(1)根據(jù)以上操作和發(fā)現(xiàn),求的值;
(2)將該矩形紙片展開.
①如圖③,折疊該矩形紙片,使點C與點H重合,折痕與AB相交于點P,再將該矩形紙片展開.求證:∠HPC=90°;
②不借助工具,利用圖④探索一種新的折疊方法,找出與圖③中位置相同的P點,要求只有一條折痕,且點P在折痕上,請簡要說明折疊方法.(不需說明理由)
【答案】(1);(2)①證明見解析;②見解析.
【解析】(1)依據(jù)△BCE是等腰直角三角形,即可得到CE=BC,由圖②,可得CE=CD,而AD=BC,即可得到CD=AD,即=;
(2)①由翻折可得,PH=PC,即PH2=PC2,依據(jù)勾股定理可得AH2+AP2=BP2+BC2,進而得出AP=BC,再根據(jù)PH=CP,∠A=∠B=90°,即可得到Rt△APH≌Rt△BCP(HL),進而得到∠CPH=90°;
②由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,故沿著過D的直線翻折,使點A落在CD邊上,此時折痕與AB的交點即為P;由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,進而得到CP平分∠BCE,故沿著過點C的直線折疊,使點B落在CE上,此時,折痕與AB的交點即為P.
(1)由圖①,可得∠BCE=∠BCD=45°,
又∵∠B=90°,
∴△BCE是等腰直角三角形,
∴,即CE=BC,
由圖②,可得CE=CD,而AD=BC,
∴CD=AD,
∴=;
(2)①設(shè)AD=BC=a,則AB=CD=a,BE=a,
∴AE=(﹣1)a,
如圖③,連接EH,則∠CEH=∠CDH=90°,
∵∠BEC=45°,∠A=90°,
∴∠AEH=45°=∠AHE,
∴AH=AE=(﹣1)a,
設(shè)AP=x,則BP=a﹣x,由翻折可得,PH=PC,即PH2=PC2,
∴AH2+AP2=BP2+BC2,
即[(﹣1)a]2+x2=(a﹣x)2+a2,
解得x=a,即AP=BC,
又∵PH=CP,∠A=∠B=90°,
∴Rt△APH≌Rt△BCP(HL),
∴∠APH=∠BCP,
又∵Rt△BCP中,∠BCP+∠BPC=90°,
∴∠APH+∠BPC=90°,
∴∠CPH=90°;
②折法:如圖,由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,
故沿著過D的直線翻折,使點A落在CD邊上,此時折痕與AB的交點即為P;
折法:如圖,由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,
由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,
又∵∠DCH=∠ECH,
∴∠BCP=∠PCE,即CP平分∠BCE,
故沿著過點C的直線折疊,使點B落在CE上,此時,折痕與AB的交點即為P.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一面墻上有一個矩形的門洞,現(xiàn)要將它改為一個圓弧形的門洞,圓弧所在的圓外接矩形,已知矩形的高AC=2米,寬CD=米.
(1)求此圓形門洞的半徑;
(2)求要打掉墻體的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD中,AB=2,BC=3,過對角線AC中點O的直線分別交邊BC、AD于點E、F
(1)求證:四邊形AECF是平行四邊形;
(2)如圖2,當(dāng)EF⊥AC時,求EF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有2個,若從中隨機摸出一個球,這個球是白球的概率為.
(1)求袋子中白球的個數(shù);(請通過列式或列方程解答)
(2)隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:ABCD的對角線AC、BD相交于點O,過點D作DP∥OC且DP=OC,連接CP.得到四邊形CODP.
(1)如圖(1),在ABCD中,若∠ABC=90°,判斷四邊形CODP的形狀,并證明;
(2)如圖(2),在ABCD中,若AB=AD,判斷四邊形CODP的形狀,并證明;
(3)如圖(3),在ABCD中,若∠ABC=90°,且AB=AD,判斷四邊形CODP的形狀,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A在線段BD上,在BD的同側(cè)作等腰和等腰,其中,CD與BE、AE分別交于點P、對于下列結(jié)論:
∽;;;.
其中正確的是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:AD平分∠CAE,AD∥BC.
(1)求證:△ABC是等腰三角形.
(2)當(dāng)∠CAE等于多少度時△ABC是等邊三角形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線甲:y=﹣2x2﹣1和拋物線乙的形狀相同,且兩條拋物線的對稱軸均為y軸,兩點距離5個單位長度,它們的圖象如圖所示,則拋物線乙的解析式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△CEF均為等腰直角三角形,E在△ABC內(nèi),∠CAE+∠CBE=90°,連接BF.
(1)求證:△CAE∽△CBF
(2)若BE=1,AE=2,求CE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com