【題目】如圖,在Rt△ABC中,∠B=90°∠A的平分線交BCD,EAB上一點,DE=DC,以D為圓心,以DB的長為半徑畫圓.

求證:(1AC⊙D的切線;(2AB+EB=AC

【答案】1)證明見試題解析;(2)證明見試題解析.

【解析】試題(1)過點DDF⊥ACF,求出BD=DF等于半徑,得出AC⊙D的切線.

2)先證明△BDE≌△FCDHL),根據(jù)全等三角形對應(yīng)邊相等及切線的性質(zhì)的AB=AF,得出AB+EB=AC

證明:(1)過點DDF⊥ACF;(1分)

∵AB⊙D的切線,AD平分∠BAC,

∴BD=DF,(3分)

∴AC⊙D的切線.(4分)

2∵AC⊙D的切線,

∴∠DFC=∠B=90°,

Rt△BDERt△FCD中;

∵BD=DFDE=DC,

∴Rt△BDE≌Rt△FCDHL),(6分)

∴EB=FC.(8分)

∵AB=AF,

∴AB+EB=AF+FC,

AB+EB=AC.(10分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A,B兩點,點P在以C(﹣2,0)為圓心,1為半徑的⊙C上,QAP的中點,已知OQ長的最大值為,則k的值為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校圍繞著你最喜歡的體育活動項目是什么?(只寫一項)的問題,對在校學(xué)生進行了隨機抽樣調(diào)查,從而得到一組數(shù)據(jù),如圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題:

(1)該校對多少名學(xué)生進行了抽樣調(diào)查?

(2)本次抽樣調(diào)查中,最喜歡足球活動的有多少人?占被調(diào)查人數(shù)的百分比是多少?

(3)若該校九年級共有400名學(xué)生,圖2是根據(jù)各年級學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計圖,請你估計全校學(xué)生中最喜歡籃球活動的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條公路環(huán)繞山腳的部分是一段圓弧形狀(O為圓心),過A,B兩點的切線交于點C,測得∠C120°A,B兩點之間的距離為60m,則這段公路AB的長度是(

A.10πmB.20πmC.10πmD.60m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y1x22x3,一次函數(shù)y2x1

1)在同一坐標(biāo)系中,畫出這兩個函數(shù)的圖象;

2)根據(jù)圖形,求滿足y1y2x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知Q(﹣13),A0,4),點Px軸上一動點,以QP為腰作等腰RtQPH,當(dāng)OH+AH最小時,點H的橫坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,同學(xué)們利用所學(xué)知識去測量海平面上一個浮標(biāo)到海岸線的距離. 在一筆直的海岸線l上有A、B兩個觀測站,AB的正東方向,小宇同學(xué)在A處觀測得浮標(biāo)在北偏西60°的方向,小英同學(xué)在距點A60米遠的B點測得浮標(biāo)在北偏西45°的方向,求浮標(biāo)C到海岸線l的距離(結(jié)果精確到0.01 m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知公路LA,B兩點之間的距離為100米,小明要測量點C與河對岸的公路L的距離,在A處測得點C在北偏東60°方向,在B處測得點C在北偏東30°方向,則點C到公路L的距離CD_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提升青少年的身體素質(zhì),鄭州市在全市中小學(xué)推行“陽光體育”活動,河南省實驗中學(xué)為滿足學(xué)生的需求,準(zhǔn)備再購買一些籃球和足球.如果分別用800元購買籃球和足球,購買籃球的個數(shù)比足球的個數(shù)少2個,足球的單價為籃球單價的

1)求籃球、足球的單價分別為多少元?

2)學(xué)校計劃用不多于5200元購買籃球、足球共60個,那么至少購買多少個足球?

3)在(2)的條件下,若籃球數(shù)量不能低過15個,那么有多少種購買方案?哪種方案費用最少?最少費用是多少?

查看答案和解析>>

同步練習(xí)冊答案