【題目】已知:如圖,四邊形ABCD中,ADBC,∠B=90°,AD=AB=4,BC=7,點(diǎn)EBC上,將CDE沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)F處.

1)求線(xiàn)段DC的長(zhǎng)度;

2)求FED的面積.

【答案】15;(2

【解析】

1)通過(guò)證明四邊形ABMD是正方形,可得DM=BM=AB=4,CM=3,由勾股定理可求CD的長(zhǎng).

2)由折疊的性質(zhì)可得EF=CE,DC=DF=5,由“HL“可證RtADFRtMDC,可得AF=CM=3,由勾股定理可求EC的長(zhǎng),即可求解.

解:(1)過(guò)點(diǎn)DDMBCM

ADBC,∠B=90°,

∴∠A=90°,且∠B=90°,DMBC,

∴四邊形ABMD是矩形,且AD=AB,

∴四邊形ABMD是正方形.

DM=BM=AB=4CM=3,

RtDMC中,CD===5,

2)∵將CDE沿DE折疊,

EF=CE,DC=DF=5,且AD=DM

RtADFRtMDCHL),

AF=CM=3

BF=1,

EF2=BF2+BE2

CE2=1+7-CE2,

CE=

SFED=×CE×DM=×=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是O的直徑,弦CDAB,垂足為H,連結(jié)AC,過(guò)上一點(diǎn)E作EGAC交CD的延長(zhǎng)線(xiàn)于點(diǎn)G,連結(jié)AE交CD于點(diǎn)F,且EG=FG,連結(jié)CE.

(1)求證:ECF∽△GCE;

(2)求證:EG是O的切線(xiàn);

(3)延長(zhǎng)AB交GE的延長(zhǎng)線(xiàn)于點(diǎn)M,若tanG=,AH=,求EM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中∠A=60°,BMAC于點(diǎn)M,CNAB于點(diǎn)N,PBC邊的中點(diǎn),連接PM,PN,則下列結(jié)論:①PM=PN;;③△PMN為等邊三角形;④當(dāng)∠ABC=45°時(shí),BN=PC.其中正確的個(gè)數(shù)是( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛快車(chē)從甲地開(kāi)往乙地,一輛慢車(chē)從乙地開(kāi)往甲地,兩車(chē)同時(shí)出發(fā),設(shè)慢車(chē)離乙地的距離為y1km),快車(chē)離乙地的距離為y2km),慢車(chē)行駛時(shí)間為xh),兩車(chē)之間的距離為Skm),y1,y2x的函數(shù)關(guān)系圖象如圖(1)所示,Sx的函數(shù)關(guān)系圖象如圖(2)所示:

1)圖中的a  ,b  

2)求S關(guān)于x的函數(shù)關(guān)系式.

3)甲、乙兩地間依次有E、F兩個(gè)加油站,相距200km,若慢車(chē)進(jìn)入E站加油時(shí),快車(chē)恰好進(jìn)入F站加油.求E加油站到甲地的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】創(chuàng)新需要每個(gè)人的參與,就拿小華來(lái)說(shuō),為了解決曬衣服的,聰明的他想到了一個(gè)好辦法,在家寬敞的院內(nèi)地面上立兩根等長(zhǎng)的立柱、 (均與地面垂直),并在立柱之間懸掛一根繩子.由于掛的衣服比較多,繩子的形狀近似成了拋物線(xiàn),如圖,已知立柱米, 米.

(1)求繩子最低點(diǎn)離地面的距離;

(2)為了防止衣服碰到地面,小華在離米的位置處用一根垂直于地面的立柱撐起繩子 (如圖2),使左邊拋物線(xiàn)的最低點(diǎn)距米,離地面米,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線(xiàn)AB軸交于點(diǎn)A,與軸交于點(diǎn)B,與直線(xiàn)OC交于點(diǎn)C

1)若直線(xiàn)AB解析式為

求點(diǎn)C的坐標(biāo);

△OAC的面積.

2)如圖2,作的平分線(xiàn)ON,若AB⊥ON,垂足為E, OA4,P、Q分別為線(xiàn)段OA、OE上的動(dòng)點(diǎn),連結(jié)AQPQ,試探索AQPQ是否存在最小值?若存在,求出這個(gè)最小值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校20名數(shù)學(xué)教師的年齡(單位:歲)情況如下:29,42,58,37,53,52,49,24,37,46,42,55,40,38,50,26,54,26,44,52.

(1)填寫(xiě)下面的頻率分布表:

分組

頻數(shù)

頻率

19.5~29.5

29.5~39.5

39.5~49.5

49.5~59.5

合計(jì)

(2)畫(huà)出數(shù)據(jù)的頻數(shù)分布直方圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】幾何體的三視圖相互關(guān)聯(lián).已知直三棱柱的三視圖如圖,在△PMN中,∠MPN=90°,PN=4,sin∠PMN=

(1)求BCFG的長(zhǎng);

(2)若主視圖與左視圖兩矩形相似,求AB的長(zhǎng);

(3)在(2)的情況下,求直三棱柱的表面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明參加某個(gè)智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題小明都不會(huì),不過(guò)小明還有一個(gè)求助沒(méi)有用(使用求助可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).

(1)如果小明第一題不使用求助,那么小明答對(duì)第一道題的概率是  

(2)如果小明將求助留在第二題使用,請(qǐng)用樹(shù)狀圖或者列表來(lái)分析小明順利通關(guān)的概率.

(3)從概率的角度分析,你建議小明在第幾題使用求助.(直接寫(xiě)出答案)

查看答案和解析>>

同步練習(xí)冊(cè)答案