【題目】如圖,在ABCD中,AD=2AB,F是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結論中一定成立的是______.(把所有正確結論的序號都填在橫線上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.
【答案】①②④.
【解析】
①在ABCD中,AD=2AB,F是AD的中點,則AF=FD=CD,∠DFC=∠DCF,再根據∠DFC=∠FCB,得到∠DCF=∠BCF即可證明;②延長EF,交CD延長線于M,證明△AEF≌△DMF即可轉換得到EF=CF;③由②得到的EF=FM,知S△EFC=S△CFM,由于MC>BE,可得S△BEC≤2S△EFC;④設∠FEC=x,則∠FCE=x,∠DCF=∠DFC=90°﹣x,再分別用x表示出∠DFE和∠AEF,判斷即可.
①∵F是AD的中點,
∴AF=FD,
∵在ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠FCB,
∴∠DCF=∠BCF,
∴∠DCF=∠BCD,故此選項正確;
延長EF,交CD延長線于M,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠A=∠MDF,
∵F為AD中點,
∴AF=FD,
在△AEF和△DFM中,
,
∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴FC=EF,故②正確;
③∵EF=FM,
∴S△EFC=S△CFM,
∵MC>BE,
∴S△BEC≤2S△FCM,
∴S△BEC≤2S△EFC,
故S△BEC=2S△CEF錯誤;
④設∠FEC=x,則∠FCE=x,
∴∠DCF=∠DFC=90°﹣x,
∴∠EFC=180°﹣2x,
∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,
∵∠AEF=90°﹣x,
∴∠DFE=3∠AEF,故此選項正確.
故答案為:①②④.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過矩形ABCD的對角線BD上一點K分別作矩形兩邊的平行線MN與PQ,那么圖中矩形AMKP的面積S1與矩形QCNK的面積S2的大小關系是S1_____S2;(填“>”或“<”或“=”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點O為等腰三角形ABC的底邊AB的中點,以點O為圓心,AB為直徑的半圓分別交AC,BC于點D,E.
求證:(1)∠AOE=∠BOD;
(2).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校舉行了“文明在我身邊”攝影比賽.已知每幅參賽作品成績記為分().校方從600幅參賽作品中隨機抽取了部分參賽作品,統(tǒng)計了它們的成績,并繪制了如下不完整的統(tǒng)計圖表.
根據以上信息解答下列問題:
(1)統(tǒng)計表中的值為 ;樣本成績的中位數(shù)落在分數(shù)段 中;
(2)補全頻數(shù)分布直方圖;
(3)若80分以上(含80分)的作品將被組織展評,試估計全校被展評作品數(shù)量是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,P為AB邊上不與A,B重合的一動點,過點P分別作PE⊥AC于點E,PF⊥BC于點F,則線段EF的最小值是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將正面分別標有數(shù)字2,3,4的三張形狀、大小一樣的卡片洗勻后,背面朝上放在桌面上.
(1)隨機地抽取一張卡片,求抽到奇數(shù)的概率;
(2)隨機地抽取一張卡片,將卡片上標有的數(shù)字作為十位上的數(shù)字(不放回),再隨機地抽取一張卡片,將卡片上標有的數(shù)字作為個位上的數(shù)字,組成的兩位數(shù)恰好是“23”的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形中,,點是的中點,將沿折疊后得到,點的對應點為點.(1)若點恰好落在邊上,則______,(2)延長交直線于點,已知,則______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某武警部隊在一次地震搶險救災行動中,探險隊員在相距4米的水平地面A,B兩處均探測出建筑物下方C處有生命跡象,已知在A處測得探測線與地面的夾角為30°,在B處測得探測線與地面的夾角為60°,求該生命跡象C處與地面的距離.(結果精確到0.1米,參考數(shù)據:≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:直線AB與直線CD交于點O,過點O作OE⊥AB.
(1)如圖1,∠BOC=2∠AOC,求∠COE的度數(shù);
(2)如圖2.在(1)的條件下,過點O作OF⊥CD,經過點O畫直線MN,滿足射線OM平分∠BOD,在不添加任何輔助線的情況下,請直接寫出與2∠EOF度數(shù)相等的角.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com