【題目】如圖,在等腰直角△ABC中,B=90°,以點(diǎn)A為圓心任意長為半徑畫弧,與AB,AC分別交于點(diǎn)M,N,分別以點(diǎn)M,N為圓心大于長為半徑畫弧,兩弧交于點(diǎn)P,且點(diǎn)P剛好落在邊BC上,AB=10cm,下列說法中:
①AB=AD;②AP平分∠BAC;③△PDC的周長是;④AN=ND;
正確的是( ).
A.①②③B.①②④C.①③④D.②③④
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是x的二次函數(shù),該函數(shù)的圖象經(jīng)過點(diǎn)A(0,5)、B(1,2)、C(3,2).
(1)求該二次函數(shù)的表達(dá)式,畫出它的大致圖象并標(biāo)注頂點(diǎn)及其坐標(biāo);
(2)結(jié)合圖象,回答下列問題:
①當(dāng)1≤x≤4時(shí),y的取值范圍是 ;
②當(dāng)m≤x≤m+3時(shí),求y的最大值(用含m的代數(shù)式表示);
③是否存在實(shí)數(shù)m、n(m≠n),使得當(dāng)m≤x≤n時(shí),m≤y≤n?若存在,請求出m、n;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場第一次用11000元購進(jìn)某款拼裝機(jī)器人進(jìn)行銷售,很快銷售一空,商家又用24000元第二次購進(jìn)同款機(jī)器人,所購進(jìn)數(shù)量是第一次的2倍,但單價(jià)貴了10元.
(1)求該商家第一次購進(jìn)機(jī)器人多少個(gè)?
(2)若在這兩次機(jī)器人的銷售中,該商場全部售完,而且售價(jià)都是130元,問該商場總共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.
【發(fā)現(xiàn)證明】小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結(jié)論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足 關(guān)系時(shí),仍有EF=BE+FD;請證明你的結(jié)論.
【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長.(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價(jià)x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤為W(元),則當(dāng)售價(jià)x定為多少元時(shí),廠商每天能獲得最大利潤?最大利潤是多少?
(3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價(jià)的取值范圍是多少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是一垂直于水平面的建筑物,某同學(xué)從建筑物底端B出發(fā),先沿水平方向向右行走20米到達(dá)點(diǎn)C,再經(jīng)過一段坡度(或坡比)為i=1:0.75、坡長為10米的斜坡CD到達(dá)點(diǎn)D,然后再沿水平方向向右行走40米到達(dá)點(diǎn)E(A,B,C,D,E均在同一平面內(nèi)),在E處處測得建筑物頂端A的仰角為24°,則建筑物AB的高度約為__米.(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°≈0.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,,以為直徑的圓交于點(diǎn),過點(diǎn)的⊙的切線交于點(diǎn)若,則⊙的半徑是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為倡導(dǎo)健康環(huán)保,自帶水杯已成為一種好習(xí)慣,某超市銷售甲,乙兩種型號水杯,進(jìn)價(jià)和售價(jià)均保持不變,其中甲種型號水杯進(jìn)價(jià)為25元/個(gè),乙種型號水杯進(jìn)價(jià)為45元/個(gè),下表是前兩月兩種型號水杯的銷售情況:
時(shí)間 | 銷售數(shù)量(個(gè)) | 銷售收入(元)(銷售收入=售價(jià)×銷售數(shù)量) | |
甲種型號 | 乙種型號 | ||
第一月 | 22 | 8 | 1100 |
第二月 | 38 | 24 | 2460 |
(1)求甲、乙兩種型號水杯的售價(jià);
(2)第三月超市計(jì)劃再購進(jìn)甲、乙兩種型號水杯共80個(gè),這批水杯進(jìn)貨的預(yù)算成本不超過2600元,且甲種型號水杯最多購進(jìn)55個(gè),在80個(gè)水杯全部售完的情況下設(shè)購進(jìn)甲種號水杯a個(gè),利潤為w元,寫出w與a的函數(shù)關(guān)系式,并求出第三月的最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON =∠ACB = 90°,AC = BC,AB =5,△ABC頂點(diǎn)A、C分別在ON、OM上,點(diǎn)D是AB邊上的中點(diǎn),當(dāng)點(diǎn)A在邊ON上運(yùn)動(dòng)時(shí),點(diǎn)C隨之在邊OM上運(yùn)動(dòng),則OD的最大值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com